自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

rosefun96的博客

深度学习、算法交流q群596506387。

  • 博客(49)
  • 资源 (22)
  • 论坛 (1)
  • 收藏
  • 关注

原创 梯度消失、爆炸原因

梯度消失经常出现,一是在深层网络中,二是采用了不合适的损失函数,比如sigmoid。梯度爆炸一般出现在深层网络和权值初始化值太大的情况下1.深层网络角度如果上一层梯度大于1,那么层数增多的时候,最终的求出的梯度更新将以指数形式增加,即发生梯度爆炸,如果上一层梯度小于1,那么随着层数增多,求出的梯度更新信息将会以指数形式衰减,即发生了梯度消失。2.激活函数角度如果使用sigmoid作为损失函...

2020-09-30 22:00:36 6471

原创 LeetCode410. 分割数组的最大值(python,二分法)

1. 题目给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。注意:数组长度 n 满足以下条件:1 ≤ n ≤ 10001 ≤ m ≤ min(50, n)示例:输入:nums = [7,2,5,10,8]m = 2输出:18解释:一共有四种方法将nums分割为2个子数组。其中最好的方式是将其分为[7,2,5] 和 [10,8],因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。

2020-09-30 15:04:20 128

原创 Hadoop,Spark面试题汇总

Hadoop 有哪些组件?(1)HDFS集群:负责海量数据的存储,集群中的角色主要有 NameNode / DataNode/SecondaryNameNode。(2)YARN集群:负责海量数据运算时的资源调度,集群中的角色主要有 ResourceManager /NodeManager(3)MapReduce:它其实是一个应用程序开发包。————————————————版权声明:...

2020-09-24 12:20:29 213

原创 LeetCode面试题 17.01. 不用加号的加法

1. 题目设计一个函数把两个数字相加。不得使用 + 或者其他算术运算符。示例:输入: a = 1, b = 1输出: 2提示:a, b 均可能是负数或 0结果不会溢出 32 位整数来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/add-without-plus-lcci著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。2. 题解Javaclass Solution { public static

2020-09-24 11:35:25 97

原创 Faiss向量召回引擎如何做到快速查找最近邻

Faiss是Facebook开源的向量召回引擎,用于寻找与某个向量最相似的N个向量。1. 简介向量量化(Vector Quantization)所谓向量量化,就是将原来无限的空间 映射到一个有限的向量集合当然这里的映射函数也不是随便指定的,需要满足误差最小的原则,一种方法是将优化函数设置为最小平方误差:正好就是k-means方法的目标函数!因此我们可以用k-means作为寻找最佳codebook的方法。假设我们将原来2000W个向量映射到大小为20W的集合中(平均每个中心点代表100

2020-09-22 22:47:48 6834

原创 python状态码

56、列出常见的状态码和意义200 OK请求正常处理完毕204 No Content请求成功处理,没有实体的主体返回206 Partial ContentGET范围请求已成功处理301 Moved Permanently永久重定向,资源已永久分配新URI302 Found临时重定向,资源已临时分配新URI303 See Other临时重定向,期望使用GET定向获取304 Not Modified发送的附带条件请求未满足307 Temporary Redirect临时重定向,P

2020-09-21 23:40:18 114

原创 python list底层实现

列表实现可以是数组和链表。这里数值是指动态数组。因此:利用 list.insert(i,item) 方法在任意位置插入一个元素——复杂度O(N)利用 list.pop(i) 或 list.remove(value) 删除一个元素——复杂度O(N)index() O(1)append O(1)pop() O(1)pop(i) O(n)insert(i,item) O(n)del operator O(n)iteration O(n)contains(in) O(n)get slice[

2020-09-21 08:32:42 163

原创 python 大数两数相减

问题描述两个长度超出常规整形变量上限的大数相减,避免使用各语言内置库。输入两个代表整数的字符串 a 和 b,长度超过百位。输出 :返回表示结果整数的字符串。#!/usr/bin/env python# encoding=utf-8def big_num_minus(str1, str2): res = "" carry = 0 minus_flag = False if len(str1) < len(str2): minus_flag

2020-09-20 23:37:02 524

原创 LeetCode3.无重复字符的最长子串

1. 题目给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。示例 1:输入: "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: "pwwkew"输出: 3解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。 请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列

2020-09-20 22:36:02 70

原创 LeetCode283. 移动零

1. 题目给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。示例:输入: [0,1,0,3,12]输出: [1,3,12,0,0]说明:必须在原数组上操作,不能拷贝额外的数组。尽量减少操作次数。来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/move-zeroes著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。2. 题解这题关键是复杂度降下来,这里给出 O(

2020-09-20 16:43:14 56

原创 python二进制和十进制,十六进制的转换

#!/usr/bin/env python# encoding=utf-8def binary2decimal(x): string = str(x)[2:][::-1] res = 0 for i,num in enumerate(string): res += int(num)*2**i return resdef decimal2binary(x): res = "" while x: m = x%2

2020-09-20 15:58:11 81

原创 字符串字符全组合(python)

1. 相邻字符的组合输入一个字符串,输出该字符串中相邻字符的所有组合。举个例子,如果输入abc,它的组合有a、b、c、ab、bc、abc。(注意:输出的组合需要去重)输入描述:一个字符串输出描述:一行,每个组合以空格分隔,相同长度的组合需要以字典序排序,且去重。示例1输入bac输出a b c ac ba bac链接:https://www.nowcoder.com/questionTerminal/837f4d04f5cb4f26a8215b2b95cc76a5来源:牛客网

2020-09-20 12:32:20 685 2

原创 LeetCode120. 三角形最小路径和(python)

1. 问题给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。例如,给定三角形:[ [2], [3,4], [6,5,7], [4,1,8,3]]自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。说明:如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。来源:

2020-09-20 11:05:17 126

原创 LeetCode剑指 Offer 47. 礼物的最大价值

1. 题目在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?示例 1:输入: [ [1,3,1], [1,5,1], [4,2,1]]输出: 12解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物来源:力扣(LeetCode)链接:https://leetcode-cn.com

2020-09-19 22:14:06 59

原创 python random 模块

import randomdef test(): lt = [i for i in range(10)] print(random.choice(lt)) print(random.sample(lt, 5)) random.shuffle(lt) print("shuffle lt",lt) print(random.randrange(1,10)) print(random.randint(1,10)) print(random.rand

2020-09-19 16:31:17 64

原创 Python实现图的经典Dijkstra、Floyd算法

1. 简介对于最短路径算法的Dijkstra、Floyd算法:Dijkstra算法是求从某个源点到其余各个顶点的最短路径(单源最短路径),时间复杂度为 O(n2)O(n^2)O(n2) ,主要思想为每次在未确定的顶点中选取最短的路径,并把最短路径的顶点设为确定值,然后再由源点经该点出发来它相邻其他顶点的路径的值,重复以上步骤最后得到就是最短路径了。而Floyd算法针对的问题是求每对顶点之间的最短路径,相当于把Dijkstra算法执行了n遍(实际上并不是这样做),所以Floyd算法的时间复杂度为O(n3

2020-09-18 11:10:24 6622

原创 python self的含义

1. 简介self 是定义类的一个实例。比如类是 Human, self 等价于 Human().具体的原理是,python会自动对类调用 __init__方法,其中,需要把对象实例标识符传入这个方法中。因此,即使,我不用 self, 我也可以用其他的实例标识符代替。但默认是self。class Human(): def __init__(man,age,sex): man.age = age man.sex = sex def speak(man)

2020-09-18 09:56:28 99

原创 LeetCode32. 最长有效括号

1. 题目给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。示例 1:输入: "(()"输出: 2解释: 最长有效括号子串为 "()"示例 2:输入: ")()())"输出: 4解释: 最长有效括号子串为 "()()"来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-valid-parentheses著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。2.

2020-09-17 11:08:08 63

原创 LeetCode470. 由1-7的随机整数函数构造1-10随机整数函数

https://blog.csdn.net/ljsspace/article/details/6820753

2020-09-16 09:46:31 64

原创 一个数最少能由几个完全平方数的和组成(动态规划)

用 dp[n] 代表n用完全平方数的和组成的最少个数。import mathdef is_sqrt(n): sqrt=math.sqrt(n) return sqrt-int(sqrt)==0def get_res(n): dp=[1]+[0]*n if(is_sqrt(n)):return 1 for i in range(1,n+1): if(is_sqrt(i)): dp[i]=1 con

2020-09-15 22:27:24 491

原创 P2661 信息传递(并查集,python)

1. 题目原题2. 题解并查集找最小环。使用 path_count 来计算节点和父亲节点的距离。#!/usr/bin/env python# encoding=utf-8def init_parents(N): parents = {} path_count = {} for i in range(N): parents[i+1] = i+1 path_count[i+1] = 0 return parents, path_co

2020-09-12 15:44:10 78

原创 python assert和exception的区别

As for disabling them, when running python in optimized mode, where __debug__ is False, assert statements will be ignored. Just pass the -O flag:python -O script.py__debug__:如果程序运行时不带-O参数,则为True;反之则为False。https://docs.python.org/3/reference/simple_stmt

2020-09-11 12:37:59 138

原创 反欺诈调研(1)

1. 简介常见的场景:活动,比如拉新用户,一些黑产薅羊毛。某APP推出了双边现金奖励的拉新策略“邀请新用户注册,每人2元”,满10元可提现。策略上线1天后,某用户1天内邀请用户数达到5000人。从经验角度分析,该用户可能存在欺诈行为。现需要制订反欺诈策略,识别出更多的欺诈用户,以减少损失。在使用具体的反欺诈策略前,需要分析每个用户邀请新用户数量的分布情况,确定哪些用户可能存在欺诈行为,重点分析这些用户。邀请新用户数量在100个以上的用户占极少数(共31个),重点分析此类用户。2. 方法一、

2020-09-11 10:19:26 141

原创 GeoHash算法获取附近店铺和距离

1. 简介GeoHash算法将二维经纬度坐标直接转换成字符串,每一个字符串代表一个矩形区域,也就是说,这个矩形区域内所有的点(经纬度坐标)都共享相同的GeoHash字符串,字符串的长度越大,矩形的区域就越小,经度也就越高。字符串相似的表示距离相近,这样可以利用字符串的前缀匹配来查询附近的POI信息。2. GeoHash算法地球纬度区间是[-90,90],经度区间是[-180,180],通过区间法对经度和纬度分别进行计算,假如我们获取到的当前坐标为经度-0.12866, 纬度38.534413,以纬度为

2020-09-11 10:04:54 6682

原创 深度模型参数及超参数调整的经验汇总

(1)初始化对网络的权重参数进行初始化,比如:Xavier 的uniform, normal;一般的均匀分布,标准正态分布都可以尝试。神经网络参数初始化及Pytorch接口(2)Batch Normalization加快网络收敛,如果有BN了,全连接可以考虑不加Dropout。(3)激活函数选择Relu, 也可以改成PReLU, GELUs等relu变形。(4)学习率使用学习率衰减, 初始化的LR, 0.01, 0.001, 0.0001 等。注意的是,如果开始的学习率过大, 可能因为

2020-09-09 18:25:52 6772

原创 CTR模型:AFM

1. 简介FM模型将所有二阶交叉特征都认为同等重要, 一些二阶交叉特征是没有价值的,可能会引入噪声并且降低模型性能。AFM(Attentional FM)在2017年被提出,通过Attention机制来自动学习每个二阶交叉特征的重要性。和Wide&Deep, DeepCross等模型相比,AFM结构简单,参数更少,效果更好,AFM有更好的解释性,通过注意力权重知道哪些交叉特征对于预测贡献大。2. AFM 模型(1)Embedding层将每个特征映射到dense向量表示, 映射到向量 v

2020-09-08 23:44:58 6587

原创 CTR模型:NFM

1. 简介FM模型可以捕捉二阶特征,但只能线性组合,无法学习非线性关系。DNN虽然可以学习非线性特征交互,但深度网络难于训练。NFM(Neural Factorization Machines for Sparse Predictive Analytics∗)模型在2017年被提出。该模型结果FM二阶特征交互的线性,以及DNN高阶特征交互的非线性。FM 是NFM的特例,和Wide & Deep, Deep Crossing相比, NFM网络结构更浅,预测能力更强。NFM模型引入了二阶交叉

2020-09-08 23:13:22 6499

原创 CTR模型:推荐系统DeepFM模型

1.简介DeepFM模型:FM模型:使用向量内积作为成对的特征交互;虽然FM可以对特征高阶交互进行建模,但是复杂度高,一般就二阶特征交互。此外,FM模型的wide 网络仍然需要专业的特征构建。DeepFM:集成了FM模型和DNN模型,同时提取低阶和高阶的特征。2.DeepFM数据集(χ,y)(\chi, y)(χ,y),参考:DeepFM: A Factorization-M...

2020-09-08 21:22:30 6456

原创 CTR模型:Deep&Cross Network

1. 简介DCN模型(Deep & Cross Network for Ad Click Predictions)是2017年提出的。出发点:(1)人工探索所有的交叉特征是不现实的;(2)难于推广未曾出现过的交叉特征。DNN能够自动探索交叉特征并推广到未出现过的交叉特征,但是DNN的学习效率不高,且无法显式的学习特征交叉。Deep&Cross Network, DCN 模型保留了DNN的优点,并提出了新的cross network,高效学习高阶特征交互。优点:(1)cross

2020-09-08 18:32:13 6528

转载 推荐系统基础(5):推荐系统技术演进趋势

1. 简介最近两年,由于深度学习等一些新技术的引入,推荐系统表现出了一些比较明显的技术发展趋势。召回,主要根据用户部分特征,从海量的物品库里,快速找回一小部分用户潜在感兴趣的物品,然后交给排序环节,排序环节可以融入较多特征,使用复杂模型,来精准地做个性化推荐。召回强调快,排序强调准。四个环节是:召回,粗排序,精排序,重排。由于每个用户召回环节返回的物品数量还是太多,怕排序环节速度跟不上,在召回和精排之间加入一个粗排环节。通过少量的用户和物品特征,简单模型,对召回的结果进行粗略的排序,粗排往往是可

2020-09-08 12:39:20 6794

原创 推荐系统基础(1):模型训练及使用流程的标准化

参考:推荐系统中模型训练及使用流程的标准化;

2020-09-08 09:50:39 6510

原创 CTR模型:DeepCrossing

1. 简介DeepCrossing是2016年提出的模型。对于web-scale, 特征数量大,如何自动组合特征生成高阶特征是一个问题。2. 模型2.1 数据在搜索广告任务中,有大量的原始特征,每个原始特征都用一个向量表示,原始特征包括:(1)用户 query:用户搜索文本;(2)广告主竞价 keyword:广告主的竞价关键词;(3)广告Title:广告的标题文本;(4)MatchType:广告主指定的关键词匹配类型。分为exact,phrase,broad,contextual.(5)

2020-09-08 00:38:02 6452

原创 CTR模型:PNN

1.简介PNN模型(Product-based Neural Networks for User ResponsePrediction)是2016年提出的。场景是预测用户反应,比如是点击,转化,在推荐系统,网络搜索,在线广告等,都有应用。但这些场景会存在很多的类别特征,包含多个fields, 典型的表示是通过one-hot把它转换到高维的稀疏二值特征表示。对应这种极端稀疏,传统模型局限于挖掘浅层的特征,比如,低阶特征组合。深度模型,比如深度神经网络,不能直接应用高维的输入,因为这会导致巨大的特征空

2020-09-08 00:16:09 6488

原创 CTR模型:FNN模型

1. 简介FNN 模型是2016年提出的,基于传统机器学习模型,如LR,FM等,的CTR预测方案被称为基于浅层模型的方案。 优点是模型简单,预测性能较好,可解释性强。缺点是,很难自动提取高阶组合特征携带的信息。于是, 基于因子分解即的神经网络(Factorization Machine supported Neural Network, FNN)被提出。2. FNN模型输入的类别特征是 field-wise one-hot编码的。每个field相当于一个类别特征,比如 city。FNN模型使用因

2020-09-07 21:46:42 7148

原创 CTR预估模型DSSM

1. 简介CTR预估模型主要用于搜索,推荐,计算广告等领域,传统CTR模型包括逻辑回归LR模型,因子分解机FM模型,梯度提升树GBDT模型等。优点是可解释性强,训练和部署方便,便于在线学习。在搜索广告的场景中,query 和document使用不同的单词,同一个单词不同形态来表达同一个概念,需要通过文本的单词匹配来计算query和document的相似性。2. DSSM 模型思想:将query 和document降维到公共的低维空间, 在低维空间,query 和document的相似性通过两者的

2020-09-07 21:06:37 6597

原创 python正则表达式(re match,search,sub等模块)

1.简介正则表达式是检查一个字符串是否与某种模式匹配。re 模块含有 match, search等功能正则表达式的语法:2. re.matchre.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话,返回None.re.match(pattern, string, flags=0)pattern: 匹配的正则表达式;string:要匹配的字符串;flags: 标志位;此外,可以通过 group(num) 来获取匹配表达式的小组。import re l

2020-09-07 16:28:20 187

原创 随机梯度下降法 SGD

1. 梯度下降batch_size = 1: SGDbatch_size = n: mini-batchbatch_size = 全部训练集大小:batch SGD对比:(1)batch SGD: 噪声小, 幅度大一些;(2)mini-batch SGD: 效率高, 收敛快;我们实际在pytorch等框架使用的SGD,只要指定的batch size不等于 1, 就是 mini-batch SGD。(3)SGD:大部分时候向着全局最小值靠近, 但是有时候会远离最小值,SGD会有很多的噪声。 S

2020-09-07 09:52:59 6953

原创 NLP: GPT模型和GPT2.0模型

1. 简介NLP模型的发展历程:从Word2Vec->ELMo->GPT->BERT->MT-DNN->GPT2,NLP技术越来越倾向于用更少的有监督数据+更多的无监督数据去训练模型。2. GPT 模型思想:先通过无标签的文本去训练生成语言模型,再根据具体的NLP任务(文本分类,QA等),来通过有标签的数据对模型进行微调。2.1 模型结构模型使用了2017年提出的Transformer结构,整体是多层单向Transformer:训练数据:8亿词的BooksCo

2020-09-07 09:35:07 6983

原创 LeetCode300. 最长上升子序列(python)

1. 题目给定一个无序的整数数组,找到其中最长上升子序列的长度。示例:输入: [10,9,2,5,3,7,101,18]输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。说明:可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。你算法的时间复杂度应该为 O(n2) 。进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longes

2020-09-07 08:41:15 200

原创 NLP:XLNet模型

1. 简介XLNet是一种类似BERT的模型,XLNet是一种通用的自回归预训练方法,由CMU和Google Brain团队在2019年6月发布,在18个任务取得了当前最佳效果,包括机器回答,自然语言推断,情感分析,文档排序。出发点:BERT是基于去噪自编码器的预训练模型,可以很好对双向语境信息建模,性能优于自回归语言模型的预训练方法。但是,优于需要mask一部分的输入,BERT模型忽略了mask位置之间的依赖关系,出现预训练和微调效果的差异。提出的XLNet是一种泛化的自回归预训练模型,可以:

2020-09-06 17:15:57 6611

python程序设计(浙江大学).rar

python程序设计PPT(浙江大学python课件)对应慕课该课程PPT。 包含9章内容: python语言介绍; 语句; 字符串,列表,元组; 集合,字典; 函数,命名空间和作用域; 文件读写操作; Web应用; 网络爬虫;等

2020-10-22

深度卷积生成对抗网络TensorFlow代码实现

Tensorflow implementation of [Deep Convolutional Generative Adversarial Networks](http://arxiv.org/abs/1511.06434) which is a stabilize Generative Adversarial Networks.

2018-12-25

变分自编码器python代码

generate.py; model.py; train.py; read.py四个代码文件,实现vae。

2018-12-25

Python for Probability,Statistics,and Machine Learning.pdf

Python for Probability,Statistics,and Machine Learning.pdf Python for Probability,Statistics,and Machine Learning.pdf

2018-01-11

tennessee-eastman21Faults.rar

TE过程数据 d00.dat ~ d21.dat 以及 d00_te.dat ~ d21_te.dat

2012-12-31

小波变换详解及应用2页PPT

小波变换 在这一章中,我们介绍小波转换。最近几年来,有一种方法被使 用在分解信号方面,而此方法就是小波转换,为什么我们需要这个方 法去分解信号呢?为了去回答这个问题,我们先来看看另一种对分析信 号的标准工具-傅立叶转换(Fourier transform)。

2017-11-27

从FM到FFM.pdf

美团技术团队的FM各类模型分析,侵删。

2020-04-27

预训练在⾃然语⾔处理的发展,从Word Embedding到BERT模型

预训练在⾃然语⾔处理的发展,从Word Embedding到BERT模型,45页PPT

2018-11-23

C++编写的图书馆管理系统

使用C++编写 的图书馆管理系统。 void ViewBook(ook &amp;boo;,lend &amp;Lin;); void ViewCard(ook &amp;boo;,lend &amp;Lin;)等还几个类。

2017-11-22

Windows直接安装版本redis-3

Windows直接安装版本redis-3.2 64位 下载后解压缩,直接运行安装。

2018-01-30

数据结构基础期末考试 2005-2012.7z

数据结构基础期末考试 2005-2012 Final Exam of Fundamentals of Data Structures 2012-2013.pdf Final Exam of Fundamentals of Data Structures 2011-2012.pdf etc

2017-12-09

TensorFlow_ Large-Scale Machine Learning

TensorFlow_ Large-Scale Machine Learning on Heterogeneous Distributed Systems.pdf )

2017-12-17

arduinoTimerOneLibrary_v1.1.0

The library provides two objects — Timer1 and TimerRTC — to manipulate different hardware timers as follows.

2017-11-08

MySQL编译文件直接下载安装mysqlclient-1.3.7-cp35-none-win_amd64.whl

MySQL编译文件直接下载安装mysqlclient-1.3.7-cp35-none-win_amd64.whl 只使用于python3.5! 其他python需要相应版本的。

2018-01-28

visual studio 黑色主题

visual studio 黑色主题,适用于各个版本,直接导入配置即可。 dark-vision.vssettings

2018-01-25

C程往年试卷2000-2010年

C程往年试卷2000-2010年 ZJU C程往年试卷2000-2010年

2018-01-14

生成对抗网络画猫python

使用对抗神经网络来画猫.pptx; 以及对应的生成对抗网络代码。 使用对抗神经网络来画猫.pptx; 以及对应的生成对抗网络代码。 使用对抗神经网络来画猫.pptx; 以及对应的生成对抗网络代码。

2018-12-25

使用AutoEncoder实现语音增强.pptx

使用AutoEncoder实现语音增强.pptx,15页PPT内容;使用AutoEncoder实现语音增强.pptx

2018-12-29

python qt gui快速编程PyQt编程指南 pdf扫描版及随书源代码源码.zip

PYTHON QT GUI快速编程---PYQT编程指南》,其英文原版书名为:《Rapid GUI Programming with Python and Qt》PDF扫描版; 包括随书源代码。

2018-03-04

人工智能Nilsson(中文版)

人工智能(中文版 nils nilsson).pdf 人工智能: 英文版- 尼尔森, Nils J. Nilsson

2018-11-26

机器学习实战随书代码machine learning in action

机器学习实战随书代码machine learning in action随书代码;CH02-CH15

2017-12-19

深度学习与自然语言处理

2018年发布的,由佐治亚理工学院交互计算学院副教授Jacob Eisenstein编写的深度学习与自然语言处理的教材。 LEARNING;SEQUENCES and TREES;MEANING

2018-12-13

rosefunR的留言板

发表于 2020-01-02 最后回复 2020-04-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除