- 博客(15)
- 资源 (22)
- 论坛 (1)
- 收藏
- 关注
原创 如何证明根号2,3是无理数
1.问题推广成,如何证明 根号 p(p是素数)是无理数素数:一个大于1的自然数,如果除了1和它自身外,不能被其他自然数整除(除0以外)的数称之为素数。2.思路反证法:假如(p)=ab\sqrt{(p)} = \frac{a}{b}(p)=ba 其中, a, b互质的整数。然后,a2=pb2a^2 = p b^2a2=pb2假如aaa 没有质因子 p,那么, a2a^2a2 ...
2019-07-23 14:02:50
931
原创 字符串左旋和右旋的常见方法
1.问题比如数组,假设以数组的某个索引,或者索引之间,作为旋转中心,对数组进行逆时针(左旋)或顺时针(右旋)的旋转。类似这样:int[] a={1,2,3,4,5}左旋3个之后 {4,5,1,2,3}右旋3个之后 {3,4,5,1,2}2.思路2.1 O(1)空间以字符串abcdef为例,若是左旋问题,首先我们可以拿出首个字符a,将其与后面的每一个字符交换一次,得到新的...
2019-07-23 13:40:32
188
原创 [字符串] 给字符串s1: abcde, s2: abedcbde,如何判断s1的每个字符,是否顺序的在s2中出现过
1.问题给字符串s1: abcde, s2: abedcbde,如何判断s1的每个字符,是否顺序的在s2中出现过2.思路给定两个索引 l1, l2,遍历s2是否出现有s1对应索引 l1 的字符,如果出现,l1,l2向前移动,否则,l2 继续向前移动。...
2019-07-23 11:33:27
415
原创 【二叉树】先序序列为a,b,c,d 的不同二叉树的个数
1.问题先序序列为a,b,c,d 的不同二叉树的个数是2.解决思路不是很懂,为什么前序序列和中序序列相当于入栈次序和出栈次序?卡特兰数参考:牛客网;百度百科;...
2019-07-23 10:56:40
8405
2
原创 LeetCode155. 最小栈 O(1)时间获取栈的最小值 java
1.问题题目描述:定义栈的数据结构,请在该类型中实现一个能够得到栈最小元素的min函数。除了有push和pop操作外,还有一个min函数返回栈中的最小值, push,pop和min函数的时间复杂度都要为O(1)。2.思路定义一个辅助栈,辅助栈记录入栈时栈的最小值。比如栈有10个元素,刚开始入栈时,辅助栈也把这个元素作为最小值进行入栈;栈压入第二个元素时,辅助栈比较这两个元素,取最小值进行...
2019-07-23 10:25:32
128
原创 [经典面试题]:随机森林RF,梯度提升决策树GBDT,极限提升树Xgboost,轻量级梯度提升机lightgbm理论比较
由于本文是基于面试整理,因此不会过多的关注公式和推导,如果希望详细了解算法内容,敬请期待后文。 RF、GBDT和XGBoost都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善单个学习器的泛化能力和鲁棒性。 根据个体学习器的生成方式,目前的集成学习方法大致分为两大类:即个体学习器之间存在强依赖关系、必须串行生成的序列化方法,以及...
2019-07-16 23:30:30
5312
6
原创 多分类学习(二分类学习推广)
1.多分类学习考虑 N个类别 C1,C2,⋯ ,CnC_1, C_2, \cdots, C_nC1,C2,⋯,Cn;多分类学习的基本思路是“拆解法”,把多分类的任务分解为多个二分类的任务,并用二分类任务训练一个分类器。测试的时候,对这些分类器的预测结果进行集成,获得最后的多分类结果。2.One vs. One(OvO)一对一拆分方法。输入:样本集 D={...
2019-07-14 17:59:04
274
原创 线性判别分析LDA
1.LDALDA(Linear Discriminant Analysis)是一种线性学习方法,最早是由Fisher在二分类问题上提出,也称“Fisher 判别分析”。严格来说,LDA与Fisher判别分析稍有不同,LDA假设了各类样本的协方差矩阵相同且满秩。2.思想LDA思想是,给定样本,希望找到一个投影线 y, 使得样本投影后,类内投影点尽可能接近,异类样本投影点尽可能远离。输入:D...
2019-07-14 17:20:32
108
原创 SVM面试题
SVM原理SVM是二分类模型,思想是在特征空间中寻找间隔最大化的分离超平面的线性分类器。(1)数据线性可分,通过硬间隔最大化(几何距离),学习一个线性分类器,即线性可分支持向量机;(2)数据近似线性可分时(也可以说线性不可分),引入松弛变量,软间隔最大化,即线性支持向量机;(3)数据线性不可分,引入核技巧,软间隔最大化,学习非线性支持向量机;为什么采用间隔最大化?当训练数据是可分时,存...
2019-07-11 11:01:44
164
原创 处理样本不均衡问题方法
1.扩大数据集增加少数类样本。2.修改损失函数给予少数类分错损失更大的权重。3.重采样过采样少数类;欠采样多数类4.人工数据GAN生成数据;属性值随机采样构造人工样本;朴素贝叶斯方法采样(假设各属性相互独立)5.检测思路把少数类当做异常值看待。...
2019-07-10 14:59:34
968
原创 置信区间
1.解释置信区间是频率派的观念,而不是贝叶斯派的概念。频率派认为真值是一个常数,而非一个随机变量。95%的置信区间,就是,重复100次随机抽样的区间,其中95次包含了参数真值,也就是置信度95%。...
2019-07-10 14:50:23
1377
原创 特征工程汇总: 异常值处理、特征选择
1.特征离散化特征离散化,就是,对于数值型特征(连续或者非连续),可以吧特征转变为离散特征。方法,就是,把特征数值从小到大排序,然后,等值或者等数量用相应的离散数值代替。或者,对于非连续特征进行独热编码(one-hot).2.特征交叉特征交叉也是特征组合,考虑在一种特征取值下,其他特征取值的情况。比如,估计学生的每月消费水平。考虑,性别,年龄,家庭收入等特征。同时考虑性别和家庭收入两个...
2019-07-10 14:28:40
148
原创 隐含狄利克雷分布LDA与python实践
1.理论隐含狄利克雷分布(英语:Latent Dirichlet allocation,简称LDA),是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出。同时它是一种无监督学习算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可。此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它。LDA贝叶斯网络结构:2.实践def LDA...
2019-07-02 10:08:54
4715
转载 知识图谱
1. 定义知识图谱在学术界还没有统一的定义,根据维基百科,知识图谱2012年首先由谷歌公司提出,是一个提供智能搜索服务的大型知识库。因此,这里我们可以将知识图谱理解为,对语义知识的一种形式化描述框架。2.组成整个场景由三个部分组成: 用户提问-> google建KG, 找答案->回答问题。1) 用户提问这里的关键在一个自然语言的query是如何转为KG的query。常用的...
2019-07-01 10:04:42
4207
生成对抗网络画猫python
2018-12-25
python程序设计(浙江大学).rar
2020-10-22
深度卷积生成对抗网络TensorFlow代码实现
2018-12-25
深度学习与自然语言处理
2018-12-13
python qt gui快速编程PyQt编程指南 pdf扫描版及随书源代码源码.zip
2018-03-04
MySQL编译文件直接下载安装mysqlclient-1.3.7-cp35-none-win_amd64.whl
2018-01-28
Python for Probability,Statistics,and Machine Learning.pdf
2018-01-11
TensorFlow_ Large-Scale Machine Learning
2017-12-17
数据结构基础期末考试 2005-2012.7z
2017-12-09
小波变换详解及应用2页PPT
2017-11-27
C++编写的图书馆管理系统
2017-11-22
arduinoTimerOneLibrary_v1.1.0
2017-11-08
rosefunR的留言板
发表于 2020-01-02 最后回复 2020-04-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝