自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

rosefun96的博客

深度学习、算法交流q群596506387。

原创 基于Microsoft Vbs对软件的改头换面

背景 刷资讯时看到一个很有趣的视频,就是写个脚本代替原来正常程序的图标(比如QQ)。 步骤 1 编写好文本内容 do msgbox "妈妈不回来,禁止玩电脑!" loop 2 修改后缀名 把.txt格式改成 .vbs格式 3 创建快捷方式...

2018-12-31 19:30:36 166 0

原创 循环神经网络RNN,Bidirectional RNN,LSTM,GRU

背景 前馈网络、CNN对序列数据只能采用固定长度作为输入,但是,句子、音频等数据,输入固定长度(虽然可以通过输入填充到固定大小来克服)。这两种网络仍比RNN表现更差,因为传统模型不理解输入的上下文。 1 循环神经网络Recurrent Neural Network 循环神经网络,时间步的...

2018-12-31 17:39:44 2807 0

原创 基于交叉可视(cross-view)训练的半监督序列建模

背景 半监督学习结合迁移学习是一个研究热点,预训练表征与多种形式的半监督学习是互补的。 这篇论文(具有交叉视训练的半监督序列建模(Semi-Supervised Sequence Modeling with Cross-View Training)),思想是确保对不同输入视图预测与主模型的预测一致...

2018-12-30 21:49:27 1056 0

原创 生成潜在最近邻的非对抗图像合成

背景 这是Facebook的一篇论文。生成对抗网络GAN在图像生成方面得到广泛的应用,其他VAE、流模型在应用都有一些差距。Wasserstein距离虽然极大提升GAN的效果,但理论上存在训练不稳定和模式丢失的问题。Facebook融合两种对抗方法的优势,提出本文GLANN的模型。 无条件生成模型...

2018-12-27 20:29:18 511 0

原创 ubuntu系统服务器的matplotlib中文乱码问题

方法 如果图像中文乱码,无法显示,可以: 1、下载中文字体simhei.ttf, 网址为http://fontzone.net/download/simhei ; 2、 搜索 matplotlib 字体的安装位置。 $locate -b '\mpl-data' 使...

2018-12-26 15:08:22 624 0

原创 基于循环卷积神经网络的文本分类

背景 这是一篇15年的论文,引入递归的卷积神经网络来进行文本分类,没有人为设计特征,尽可能捕捉上下文信息,大大减少与传统的基于窗口的神经网络相比的噪声。同时使用一个自动判断哪些单词在文本分类中扮演的关键角色,以在文本中捕获关键组件的方法。 1 介绍 文本分类中关键问题是特征表示,这通常是基于...

2018-12-25 23:10:28 3019 0

原创 时间序列的7种预测模型

背景 时间序列问题比较常见,比如股市,工业生产指标等。 1 朴素估计 使用最后一个时间点的值估测后面一段时间段的值。 2 简单平均 4 滑动窗平均 使用之前一定大小时间段的平均值作为这个时间点的值。 或者使用加权的滑动窗平均: y_hat_avg = tes...

2018-12-23 20:02:00 40439 2

原创 基于监督和半监督的文本分类

1 背景 这是16年提出的论文Supervised and Semi-Supervised Text Categorization using LSTM for Region Embeddings。 文本分类在具体应用中包含,情感分析和话题分类任务等。基于CNN的“region Embedding...

2018-12-23 17:25:07 2313 0

原创 NLP三种词袋模型CountVectorizer/TfidfTransformer/HashVectorizer

1.TF-IDF TF-IDF(term frequency-inverse document frequency)是文本加权方法,采用统计思想,即文本出现的次数和整个语料中文档频率来计算字词的重要度。 优点:过滤一些常见但是无关紧要的字词。 tfidfi,j=tfi,j×idfi,jtfi...

2018-12-19 08:59:31 1282 0

原创 机器学习分类的几种评价指标:准确率Accuracy, AUC, Precision, Recall, F1,MAPE,SMAPE

分类评价指标有准确率(accuracy)、精确率(precision)、召回率(recall)、F值等 1、AUC 精确率precision = TP/(TP +FP),即正类预测对的个数和所有预测成正类样本数比值。 召回率recall = TP/(TP +FN),即预测正类样本和原来一...

2018-12-18 23:15:15 2003 0

原创 使用元学习和推理改善模型

背景 这篇文章是NIPS 2018年元学习研讨会上的文章,提出了可能性推理的循环器。 1 动机 统计学和机器学习在科学中通常采用归纳的方法,也就是,从实验开始,推断解释数据的最简单法制。比如,通过你预测和实际人口的演变作比较,推断此环境的最佳模型参数(概率)。 通过将模型预测和实际数据进行比较,可...

2018-12-18 17:32:48 664 0

原创 可转换学习架构以实现可扩展图像识别

背景 这篇文章是2018 CVPR优秀论文之一,本文出发点在于,设计算法自动学习的神经网络结构 1 方法 作者提出NAS(neural architecture search)的方法来自动学习网络的结构,这个结构通过一个RNN采样具有不同结构的子网络,并训练子网络,根据在验证集的效果,反馈给RNN...

2018-12-17 20:54:50 435 0

原创 TCN时间卷积网络介绍

绪论 TCN, Temporal Convolutional Network,时间卷积网络,是一种能够处理时间序列数据的网络结构,论文还评为2018年10大论文。 1. 模型 输入: x0,x1,...,xt{x_0, x_1,..., x_t}x0​,x1​,...,xt​; 输出:y0...

2018-12-11 20:20:08 10821 5

原创 浅谈Attention及Transformer网络

1 Transformer 模型结构 Attention 的编码,把一个输入序列(x1,...,xn)(x_1,...,x_n)(x1​,...,xn​)表示为连续序列z=(z1,...,zn)\mathbf {z} = (z_1,...,z_n)z=(z1​,...,zn​).给定z\math...

2018-12-09 18:51:41 4238 0

原创 浅谈NLP预处理及WordEmbedding(Word2Vec,Glove等)

背景 今年看到一些算法比赛,使用 word2vec 方法越来越多了,似乎也成为了一个大杀器。一般只有特征是类别/离散特征基本上可以使用这种方法。 1.原理 这个就是它的原理,一个是CBOW,从上下文推断该时刻的概率;一个是Skip-gram,从该点推出上下文。 reference:...

2018-12-03 15:01:21 425 0

原创 机器学习对异常值处理方法

机器学习对异常值的处理方法 背景 实际应用中,数据往往存在异常值,面对异常值,我们主要有几种思路:把异常值去掉,用其他数值代替异常值,对异常值进行变换。 1.异常值检测方法 1.1 box plot 使用分位数Q1 、Q3,设置控制线,在控制线外的就当做异常值。 Interquartile ran...

2018-12-02 16:58:32 2451 0

原创 局部加权的半监督隐变量分析

局部权值的半监督隐变量分析 1. 有监督因变量分析 define: X=[x1,x2,...,xn]∈Rm×nX= [x_1,x_2,...,x_n]\in R^{m\times n}X=[x1​,x2​,...,xn​]∈Rm×n, Y=[y1,y2,...,yn]∈Rr×nY = [y...

2018-12-02 15:44:44 160 0

原创 基于python的微信自动回复

背景 无意中看到一遍微信自动功能回复的文章,拿来试试。 1、安装 pip install itchat 2 操作 import requests import itchat KEY = '8edce3ce905a4c1dbb965e6b35c3834d'...

2018-12-02 10:51:22 675 3

原创 基于极限学习机的半监督软测量方法

基于极限学习机的半监督软测量方法 (ELM with semisupervised for soft sensor ) 背景 最近看到一些批次过程过程变量和监测变量采样率不一样的情况,就是监测变量是一段时间,在获得产品之后检测获得的,而过程变量是传感器在短周期内获取的数据。 一. ELM(...

2018-12-01 17:50:00 848 0

提示
确定要删除当前文章?
取消 删除