- 博客(68)
- 资源 (22)
- 论坛 (1)
- 收藏
- 关注
原创 python包:sklearn.manifold.TSNE
1、简介t-distributed Stochastic Neighbor Embedding,t分布的随机相邻嵌入。参考:官方文档
2017-12-31 12:00:51
5042
原创 python包:sklearn.linear_model.Ridge
1、简介ridge是一个线性回归器。2、实现>>> from sklearn.linear_model import Ridge>>> import numpy as np>>> n_samples, n_features = 10, 5>>> np.random.seed(0)>>> y = np.random.randn(n_samples)>>> X = np.random.rand
2017-12-31 11:57:28
1301
原创 python入门系列(20): python 高级使用:编写类和实例
1、编写构造函数class person: def __init__(self,name,job,salary): self.name=name self.job=job self.salary=salary在这里,self是新创建的实例对象,它保存了传入的数据,name,job,salary这三个变量,为self本身的对应的三个属性。 可
2017-12-30 22:54:31
1083
原创 python入门系列(19): python的高级使用之类和OOP
1、编写类树每个class生成一个新的类对象;#define classclass c1: def setname(self,who): self.name=who#define instance by calling a classi1=c1()i1.setname('newyear')
2017-12-30 21:18:53
198
原创 python入门系列(18): python高级使用之模块代码编写
1、创建模块#printer.pydef printer(x): print(x)if __name__ == '__main__': printer('heel')调用模块#test.pyimport printerprinter.printer('hello world')或者:#test.pyfrom printer import printerprinter('hel
2017-12-30 20:47:26
363
原创 python入门系列(17): python高级使用之运算符_init_重载
#define numberclass Number: def __init__(self,start): self.data=start def __sub__(self,other): return Number(self.data-other)if __name__ == '__main__': # from number import
2017-12-30 18:53:27
1008
原创 python入门系列(16): python from _future_模块
1、简述由于Python是由社区推动的开源并且免费的开发语言,不受商业公司控制,因此,Python的改进往往比较激进,不兼容的情况时有发生。Python为了确保你能顺利过渡到新版本,特别提供了future模块,让你在旧的版本中试验新版本的一些特性。参考:廖雪峰from future模块
2017-12-29 10:55:10
230
原创 TensorFlow 中 tf.app.flags.FLAGS 的用法介绍
1、用法tf.app.flags.FLAGS 用来传递参数。参考:tf.app.flags.FLAGS用法
2017-12-28 15:55:18
6614
原创 关于python TensorFlow读取路径的问题
1、路径读取Python的路径读取满满的坑啊啊。很多次都是因为这个而运行错误。2、绝对路径比如需要读取MNIST_data里边的文件,使用绝对路径input_data.read_data_sets(r"G:\MNIST_data", one_hot=True)3、相对路径如果当前的*.py已经在G: 使用相对路径 mnist = input_data.read_data_sets("MNIST_d
2017-12-28 09:51:57
2271
1
原创 sys.path.append()用法
1、理论sys.path 返回的是一个列表!该路径已经添加到系统的环境变量了,当我们要添加自己的搜索目录时,可以通过列表的append()方法;对于模块和自己写的脚本不在同一个目录下,在脚本开头加sys.path.append(‘xxx’):import sys sys.path.append(’引用模块的地址')
2017-12-27 10:28:56
25678
原创 [坑]python数字可视化vpython包
1、vpython安装pip install vpython2、vpython基本使用2.1 查看球体from visual import *sphere()2.2 bounce.py简单实现from visual import *floor = box(length=4, height=0.5, width=4, color=color.blue)ball = sphere(pos=(0,4,0
2017-12-26 20:56:47
3738
原创 python回归模型的评估与交叉验证(待完善)
1、评估模型评估模型分为三类,MAE,MSE,R-square;2、实现2.1 Mae平均绝对误差实现# 创建数据集,其中矩阵X表示特征值,向量y表示所属类目标记值import numpy as npX=np.random.random((10,5))y=np.random.randn(10,1)# 数据切分为训练集和测试集from sklearn.cross_validation impo
2017-12-26 20:52:37
7297
原创 python交叉验证train_test_split(old:cross validation)实现
1、理论交叉验证分为三种,holdout验证(二折验证)、K折交叉验证、留一验证。2、实现##test cross validationimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn import datasetsfrom sklearn import svmiris = da
2017-12-26 20:06:02
1794
原创 算法:支持向量机回归模型SVR的python实现
1、SVR做回归<span style="font-family:Microsoft YaHei;">#-*-coding:utf-8-*-'''Created on 2016年5月4日@author: Gamer Think'''import numpy as npfrom sklearn.svm import SVRimport matplotlib.pyplot as plt###
2017-12-26 18:45:30
7934
2
原创 RBM受限玻尔兹曼机理解及实现
引言1、RBM简介2、贪婪算法 首先字典学习它是个非凸优化问题,多层字典学习将会变得更加复杂;另外多层字典学习的所要求解的参数大大增加,在有限的训练样本下,容易引起过拟合问题。因此文献提出类似于SAE、DBN一样,采用逐层训练学习的思想,这样可以保证网络的每一层都是收敛的。算法其实非常简单,以双层分解为例进行逐层分解,具体示意图如下:参考:RBM 知乎;深度学习贪婪算法 CSDN;A d
2017-12-26 16:49:20
7804
原创 python入门系列(15): python字典dict合并
1、方法一#!/usr/bin/pythondict = {'Name': 'Zara', 'Age': 7}dict2 = {'Sex': 'female' }dict_new=dict.update(dict2)只能使用dict.update()2、方法二dictMerged2 = dict( dict1, **dict2 )参考: 1. Python 字典(Dictionary) upd
2017-12-25 22:14:58
286
原创 python入门系列(14): python对字符串型数据处理
1.sklearn1.1示例1from sklearn import preprocessingle = preprocessing.LabelEncoder()le.fit(df['Col1'])df['Col3'] = le.transform(df['Col3'])1.2 示例2使用独热编码。###2/独热编码from sklearn import preprocessingfrom
2017-12-25 08:55:45
796
原创 python包tqdm安装及入门
1、安装pip install tqdm或者conda install -c conda-forge tqdm2、tqdm的使用进度条 tqdm 库比较热门,声称比老版的 python-progressbar 库的单次响应时间提高了 10 倍以上。其实进度条的原理十分的简单,无非就是在 shell 中不断重写当前输出。>>> from time import sleep>>> from tqdm
2017-12-24 13:43:47
39469
原创 Xgboost的简单使用2
1、xgboost预测#xgboost预测import xgboost as xgb# read in datadtrain = xgb.DMatrix('demo/data/agaricus.txt.train')dtest = xgb.DMatrix('demo/data/agaricus.txt.test')# specify parameters via mapparam = {'
2017-12-24 10:32:11
737
原创 python入门系列(13): python包安装方式
1、安装1.1 pip安装:C:\Users\RoFun>pip install seaborn1.2 或者使用conda 安装2、简单示例这里写代码片
2017-12-23 16:40:48
17668
1
原创 python保存列表、字典数据到本地文件
1、保存列表为.txt文件#1/list写入txtipTable = ['158.59.194.213', '18.9.14.13', '58.59.14.21'] fileObject = open('sampleList.txt', 'w') for ip in ipTable: fileObject.write(ip) fileObject.write('\n
2017-12-22 22:59:22
59259
1
原创 Pycharm安装与入门
1、pycharm安装官方下载就好。2、JDK安装pycharm需要运行在JDK下,所以,需要下载安装JDK。(存疑,一些教程并没有安装JDK,但是对于学完python将转战Java的来说,还是安装了。)2.1 配置系统环境配置环境变量:右击“我的电脑”–>”高级”–>”环境变量”。(1)JAVA_HOME环境变量。(2)CLASSPATH环境变量。(3)path环境变量具体看参考文献13、使用第一
2017-12-22 20:51:15
14094
原创 python包xgboost安装和简单使用
1、xgboost安装首先,xgboost是python的一个包,用于数据分析以及boost的实现。cp36代表python3.6。numpy-1.13.1+mkl-cp36-cp36m-win_amd64.whl scipy-0.19.1-cp36-cp36m-win_amd64.whl xgboost-0.6-cp36-cp36m-win_amd64.whl 在这里-xgboost下载,然后
2017-12-22 20:31:10
12258
原创 python包pandas安装和入门
1、安装因为自己电脑安装了anaconda,所以,直接使用conda install。(E:\Anaconda3) C:\Users\RoFun>conda install pandas参考:pandas安装_简书
2017-12-22 19:43:31
12513
原创 机器学习概貌
一、根据学习类型划分算法1、有监督学习有监督学习,是建立在有标准的输出数据来进行校正。有监督学习,可以是分类问题,也可以是回归问题。2、无监督学习无监督学习,输入的数据,没有标签或者知道的输出结果。 通过推导输入数据中存在的结构来准备模型。这可能是提取一般规则。系统地减少冗余可能是通过数学过程,也可能是通过相似性来组织数据。可以看出,无监督学习,是通过数据可能存在的某种数学关系,例如相关性,来
2017-12-22 17:36:35
325
原创 神经网络模型不收敛的处理
1、learning rate设大了0.1~0.0001.不同模型不同任务最优的lr都不一样。我现在越来越不明白TensorFlow了,我设置训练次数很大的时候,它一开始就给我“收敛”到一个值,后面的值都一样。2、归一化参考:深度学习收敛问题;训练深度神经网络
2017-12-22 14:50:02
24837
24
原创 数据预处理的python实现
1、归一化1.1简单处理列表#归一化处理raw = [0.07, 0.14, 0.07] norm=[float(i)/max(raw) for i in raw]print(norm)1.2 处理嵌套列表:#归一化处理raw = [[0.07, 0.14, 0.07],[1,2, 3]]norm=[]for i in range(len(raw)): norm.append([f
2017-12-22 14:39:38
704
原创 TensorFlow变量初始化
1、tf.Variable()2、tf.get_variable()3、tf.variable.scope()参考:tf.Variable_csdn
2017-12-22 10:47:07
355
原创 (坑)TensorFlow神经网络模型进行回归
引言使用TensorFlow训练好的神经网络模型,来进行对输入数据的输出预测,即软测量的过程。1、训练神经网络模型这里写代码片
2017-12-21 08:59:34
707
原创 python入门系列(12): python关于not a的理解
1、代码>>> a=[]>>> not aTrue>>> a=[1]>>> not aFalse>>> a=None>>> not aTrue只要a不包括任何元素,not a均为True
2017-12-20 19:11:16
754
原创 python入门系列(11): Python标准库之内置函数max(iterable, *[, key, default])
参考:python库max(, , key);lambda装饰器
2017-12-20 19:00:16
1082
原创 基于scikit-learn实现各种算法
1、random forest实现2、Adaboost实现3、neural network实现参考:ensemble method实现
2017-12-19 10:38:35
325
原创 Tensorflow1.x系列(7):TensorFlow持久化
引言持久化,就是能够把当前模型以及模型的参数能够保持下来,用于下次使用。1、持久化代码实现API
2017-12-18 21:05:04
175
原创 python包matplotlib绘图基础入门
1、matplotlibmatplotlib是numpy的扩展,可以实现python框架下的可视化,类似MATLAB的图像可视化。2、基本操作2.1绘画直方图#matplotlib使用import matplotlib.pyplot as pltfrom numpy.random import normal,randx = normal(size=200)plt.hist(x,bins=30
2017-12-18 16:02:23
571
原创 随机森林random forest及python实现
引言想通过随机森林来获取数据的主要特征1、理论 根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系,可同时生成的并行化方法; 前者的代表是Boosting,后者的代表是Bagging和“随机森林”(Random Forest) 随机森林在以决策树为基学习器构建Baggi
2017-12-18 15:20:51
46960
6
原创 python的numpy包使用
1、常用的numpy函数1.1 numpy.unique返回列中独一无二的值,即重复的值只返回一个 numpy.unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None)uniq = float_df[col].unique()1.2 numpy.corrcoef() num
2017-12-18 14:15:04
647
python程序设计(浙江大学).rar
2020-10-22
C++编写的图书馆管理系统
2017-11-22
Python for Probability,Statistics,and Machine Learning.pdf
2018-01-11
数据结构基础期末考试 2005-2012.7z
2017-12-09
TensorFlow_ Large-Scale Machine Learning
2017-12-17
小波变换详解及应用2页PPT
2017-11-27
arduinoTimerOneLibrary_v1.1.0
2017-11-08
MySQL编译文件直接下载安装mysqlclient-1.3.7-cp35-none-win_amd64.whl
2018-01-28
深度卷积生成对抗网络TensorFlow代码实现
2018-12-25
生成对抗网络画猫python
2018-12-25
python qt gui快速编程PyQt编程指南 pdf扫描版及随书源代码源码.zip
2018-03-04
深度学习与自然语言处理
2018-12-13
rosefunR的留言板
发表于 2020-01-02 最后回复 2020-04-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝