- 博客(34)
- 资源 (22)
- 论坛 (1)
- 收藏
- 关注
原创 经典算法: 隐马尔可夫模型,HMM
1、引言隐马尔可夫模型,Hidden markov model,HMM,是一种关于时序的概率模型。 作者:Yang Eninala 链接:https://www.zhihu.com/question/20962240/answer/33438846 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 还是用最经典的例子,掷骰子。假设我手里有三个不同的骰子。第一个骰子是我
2017-11-30 17:27:06
156
转载 CSDN-markdown编辑器语法: 字体、字号与颜色
Markdown是一种可以使用普通文本编辑器编写的标记语言,通过类似HTML的标记语法,它可以使普通文本内容具有一定的格式。但是它本身是不支持修改字体、字号与颜色等功能的! CSDN-markdown编辑器是其衍生版本,扩展了Markdown的功能(如表格、脚注、内嵌HTML等等)!对,就是内嵌HTML,接下来要讲的功能就需要使用内嵌HTML的方法来实现。字体、字号与颜色<font face="黑
2017-11-30 10:47:05
105
原创 EM算法及GMM实现
1、引言E,expectation(期望);M,maximization(极大化); EM算法,又称期望极大算法。为什么使用EM 算法?EM算法,是一种通过已知数据,进行推测,在经过极大化,对已有的推测进行更新推测的项目,不断迭代。所以,EM算法适用于无监督样本及 含有隐含层的样本。总的来说,如果样本没有隐含层(隐含层是指,不知道发生的结果,只有这件事发生的概率。),可以使用的算法有,贝叶斯估
2017-11-30 10:43:30
342
原创 python入门系列(5):循环语法
1、while()>>> i=1>>> sum=0>>> while i<101: sum=sum+i i=i+1>>> print(sum)50502、for()>>> sum=0>>> ii=list(range(1,100))>>> for i in ii[:]: sum=sum+i>>> sum5050>>> n=0>>> while n<10:
2017-11-29 21:23:15
191
原创 基础算法:提升方法Adaboost
1、Adaboost算法把训练集通过弱可学习,得到一系列的弱分类器。然后,把弱分类器,通过加权处理,组合成一个强分类器。 在提升方法中,弱可学习和强可学习是等价的。
2017-11-29 20:21:52
133
原创 希尔伯特空间、拓扑空间概念理解
1、引言 作者:qang pan 链接:https://www.zhihu.com/question/19967778/answer/28403912 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 什么是赋范线性空间、内积空间,度量空间,希尔伯特空间 ? 现代数学的一个特点就是以集合为研究对象,这样的好处就是可以将很多
2017-11-29 12:21:17
3923
原创 python入门系列(4):条件判断
1、条件判断if-else语句age = 3if age >= 18: print('your age is', age) print('adult')else: print('your age is', age) print('teenager')
2017-11-29 10:06:17
167
原创 python入门系列(3): 编码方式ASCII、Unicode、UTF-8
1、几种编码方式1、ASCII码:1个字节2、Unicode:两个字节3、UTF-8:可变长的编码方式,英文字符1个字节,中文字符3个字节,偏僻字符4-6个字符。使用文本编码器时,如果不是ASCII编码方式,需要对文本的类型进行说明。#!/usr/bin/env python3# -*- coding: utf-8 -*-2、例子>>> len('中文')2>>> len('中文‘'.en
2017-11-28 22:44:05
171
原创 支持向量机SVM及python实现
1、线性可分支持向量机函数间隔: 几何间隔: 间隔最大化:最大间隔法: 1)构造约束最优化函数 2)解约束函数,即获得超平面
2017-11-28 18:53:51
258
原创 逻辑斯谛回归(Logistic Regression,LR)及python实现
1、逻辑斯谛回归模型2、最大熵模型经验分布:出现的频率/样本容量; 定义: 求解:通过对偶函数极大化,或者使用极大似然函数,都可以求出最终的解。4、最优化算法最大熵模型归结为,使用似然函数为目标函数的最优化问题。 最优化问题,往往使用,迭代尺度法,梯度下降法,牛顿法,拟牛顿法等。4.1改进的迭代尺度算法IIS 思路:求似然对数函数的值,然后以ω=ω+δ来更新参数变量ω,重复求似然对数函数
2017-11-28 16:51:42
247
原创 python入门系列(2): python对象类型(字符串string,列表list,字典dict,元组tuple,集合set)
1.数字num1.1 > 数字模块,如math,random>>> import math>>> math.pi3.1415926535897931.2 //,地板除,返回一个整数,>>> 10//331.3 len()>>> len(str(2**10
2017-11-27 22:21:44
241
原创 python入门系列(1): 第一个python程序
1、安装python在官网或者百度云盘下载 云盘python下载链接2、运行python运行的三种方式: 1.采用文本编辑器 如使用notepad,sublime text,保存文件为*.py格式。运行dos系统,在保存文件的目录夹下,运行该程序。 2.直接采用命令行窗口c:\rosefun\python>>>print('1+2=',1+2)...
2017-11-27 21:36:41
182
原创 经典算法: 决策树及python实现
1、基本理论决策树,就是二叉树的一种,只不过每个分支都是需要通过条件判断进行划分。2、特征提取几个术语:熵、条件熵、信息增益。 熵 条件熵 信息增益对于给定测试集,我们只需要求出各个特征的信息增益,最大的那个便是最优特征。3、决策树的生成方法:ID3、C4.5 在生成决策树时,我们往往引入阈值e. -3.1 ID3算法 使用信息增益进行决策树的生成。 容易产生过拟合。-3.2 C4.5
2017-11-27 20:31:20
451
原创 图像分割
1、边缘检测查找法:基于一阶导数的边缘检测算法; 零穿越法:基于二阶导数。边缘检测算子: 梯度算子:sobel,prewitt LOG算子; Canny算子:如[1 2 3;8 0 4; 7 6 5] matlab实现bw=edge(I,type,thresh,direction,'nothinning');%返回二值图像2、霍夫变换思想:将图像坐标系变换到参数空间,从而实现直线和曲线的拟
2017-11-27 14:31:36
242
原创 形态学图像处理
1、形态学运算1.1腐蚀: matlab指令,I=imerode(I,se);%se为结构元素。MATLAB构造结构元素: se=strel(shape,parameters);1.2膨胀 I=imdilate(I,se);1.3开运算 相当于,先腐蚀后膨胀处理; 使图像变得光滑,断开狭窄处连接和消除毛刺。I=imopen(I,se);1.4闭运算 相当于,先膨胀后腐蚀。 使图像光滑,
2017-11-27 14:15:16
275
原创 图像压缩
1、压缩理论香农定理: 信息量,发生概率的对数值。 压缩结果必不小于原图像信息量大小。2、DCT变换与量化K-L变换:最小均方差准则下变换编码的最佳变换; 离散傅里叶变换: WHT变换:非正弦函数变换,采用正交直角函数作为基函数; 离散余弦变换: 小波变换:多分辨率分析,渐进传输;3、预测编码预测编码,通过输入的值与预测器的值的偏差进行编码,这样,原数据就可以压缩成一个初始值和偏差值的编
2017-11-27 14:02:06
551
原创 图像复原
1、理论模型1.1噪声模型 高斯噪声:常见; 瑞利噪声:二维向量呈独立、方差相等的正态分布; 伽马噪声; 指数噪声; 均匀分布噪声; 椒盐噪声(脉冲噪声);2、空间滤波其中滤波器: 均值滤波器; 统计排序滤波器; 自适应局部噪声消除滤波器; 自适应中值滤波器;3、逆滤波复原原始图像经过退化、噪声污染之后,想获得原图像,在已经退化函数、噪声函数的前提下,经过对原函数、退化函数、噪声
2017-11-27 11:24:29
1149
原创 小波变换
1、多分辨率分析将信号分解成不同空间的部分。通俗地讲,使用两个正交的函数基,可以表示一个平面的函数。如果,我们这两个函数基还可以自由的伸缩的话,我们将可以实现描述空间的所有函数。 事实时,我们描述一个平面的函数,相当于实现描述了时域。如果实现描述不同平面的函数,相当于实现描述了频域。 正交的函数基,我们分别称为,小波函数和尺度函数。2.关于小波变换通俗地说,当给定一个小波函数、尺度函数,我们先进
2017-11-27 10:22:27
1001
原创 频率域图像增强MATLAB实现
1.fft2()函数Y=fft2(X,m,n);%二维快速傅里叶操作2、fftshift()Ys=fftshift(Y,dim);%零频移到中间3、ifft2() 对频谱进行处理(如log压缩舒展处理),在把频谱转换成空间域图像。Xf=ifft2(Ys);%傅里叶反变换有意思的交换相位谱% c6s2.m% 读取图片A = rgb2gray(imresize(imread('G:\0ShiJue\
2017-11-23 11:11:02
2010
原创 空间域图像增强基本MATLAB指令
1.平滑滤波w=[1,1,1;1,1,1;1,1,1] I=imfilter(fig,w,'corr','replicate');自定义滤波模板h=fspecial(type,parameters); ex.h=fspecial('average',5);%5*5平均滤波2、高斯滤波h=fspecial('gaussian',3,0.5);%sigma=0.5的3*3模板。I=imfilter
2017-11-23 10:23:00
344
原创 K近邻(KNN)算法及python实现(含Kd树实现)
一、k近邻三大要素:距离判别公式、k的选取、分类决策 1、距离度量2、k取值 取值小,结构复杂,相似误差小,但容易过拟合; 取值大,结构简单,相似误差大。二、kd树思想:通过不断比较父节点分割线与目标点的距离与 已经找到的点与目标点的距离,进行比较,来确定要不要对该父节点下的数据进行搜索。举个例子,设我们想查询的点为 p=(−1,−5),设距离函数是普通的 距离,我们想找距离问题点最近的 k=
2017-11-22 19:04:30
351
原创 快速排序算法及C++编程
参考:http://developer.51cto.com/art/201403/430986.htm#include <string>#include <vector>#include <iostream>using namespace std;int a[101], n;//定义全局变量,这两个变量需要在子函数中使用 void quicksort(int left, int right){
2017-11-22 14:48:26
195
原创 基于PCA和SVM的人脸识别系统
基于PCA和SVM的人脸识别系统1.人脸识别简介检测分离人脸所在的区域;抽取人脸识别特征;匹配和识别2.前期处理使用PCA去除相关性;降维后的特征向量作为SVM分类的特征;3.数据规格化必要性:防止淹没数值较小的特征;防止内积过大导致溢出。 一般规格化到【-1,+1】或者【0 1】;3.1规格化的方法:1.最大最小规格化;2.零均值规格化4.核函数的规格化4、核函数优先径向基核函数(RBF):
2017-11-18 11:24:40
674
原创 支持向量机SVM的MATLAB实现
1.支持向量机Support Vector Machine,SVM。1.1分类思想以结构化风险最小为原则,兼顾训练误差与测试误差的最小化。2.svm2.1线性;2.2非线性CSVM;2.3核函数的SVM:非线性映射(把低维映射到高维;采用核函数来实现映射过程)2.3.1多类问题一对多:将需要划分的训练集进行枚举,取响应最大的那个; 一对一:两两组合,选出归类最多的那个组合; 一对一淘汰:引入分类
2017-11-16 15:23:22
13218
1
原创 基于anaconda在Windows安装TensorFlow
引言—CUDA与版本选择本人系统:Windows8.1;硬件:TensorFlow有支持CPU,GPU版本,支持GPU版本的TensorFlow对硬件(显卡)要求更高。如果显卡是nvdia(看电脑贴签)可以通过nvdia CUDA支持GPU型号,查看自己电脑时候支持CUDA,如果支持,就可以装GPU版本。(GPU版本功能更强)关于CUDA的理解博文 一、安装步骤
2017-11-14 13:05:52
1171
原创 按位取反~
参考:http://blog.csdn.net/xiexievv/article/details/81241081.按位取反、取反、原码、反码、补码原码 整数的原码、补码、反码一样,计算机以补码保存数据
2017-11-07 16:04:16
704
原创 基于局部统一模式LBP及MB-LBP的特征提取
参考:http://blog.csdn.net/u014568921/article/details/457885231、IsUniform()##检查bit是否为统一化模式(0、1转换不多于2个),把统一化模式的放在直方图收集箱bin,其他放置于公用收集箱。function bUni = IsUniform(bits) % 判断某一个位串模式 bits 是否是 uniform 模式 %
2017-11-04 16:20:26
2944
3
原创 基于ORL人脸库PCA特征提取之“基于主分量人脸重建”
参考:http://blog.csdn.net/whuhan2013/article/details/53994683; http://blog.csdn.net/weixin_35479108/article/details/78314114 1.approx()函数实现重建function [ xApprox ] = approx( x, k )% 用 k 个主成分分量来近似(重建)样本
2017-11-04 15:33:20
1074
原创 基于PCA的ORL人脸库特征抽取
ORL人脸库ORL人脸库(包含40个人的每人10张人脸的共400张人脸): http://www.cl.cam.ac.uk/Research/DTG/attarchive:pub/data/att_faces.tar.Z1.1读入样本图像 参考http://whuhan2013.github.io/blog/2017/01/03/pca-face-extraction/定义函数fu
2017-11-04 14:08:22
2797
原创 快速pca实现代码
参考http://blog.csdn.net/guyuealian/article/details/68487833**把function fastPCA封装,然后调用该程序即可实现。function [pcaA V] = fastPCA( A, k ) % 快速PCA % 输入:A --- 样本矩阵,每行为一个样本 % k --- 降维至 k 维 % 输出:pcaA --
2017-11-04 11:25:37
1447
原创 MATLAB中:冒号用法
x(:,:,:)x(i,j,k)的含义是第k层矩阵的第i行第j列元素;x(:,:,1)则表示第1层矩阵。x(1,:)y=x(1,:),把x这个矩阵的第一行所有列赋给y。 注,冒号相当于所有。 ##x(:, :)=[]例如,在matlab中,a(:, 1:3)=[]表示将数组a的第1到第3列删除。 第一个冒号( : )表示取数组a的所有行; 1:3表示取数组a的第1到第3列。 ##
2017-11-04 10:22:23
27302
3
原创 MATLAB提取区域特征
基本统计特征D=regionprops(L,properties);//properties包含area,centroid等注,MATLAB脚本命名一定不要和自带函数库名称相同I=imread('1.jpg');I=rgb2gray(I);% 转换成二值图像[L,num]=bwlabel(I2,8);% 标注连通区num%连通区个数D=regionprops(L,'centroid',
2017-11-04 09:54:08
5334
生成对抗网络画猫python
2018-12-25
python程序设计(浙江大学).rar
2020-10-22
深度卷积生成对抗网络TensorFlow代码实现
2018-12-25
深度学习与自然语言处理
2018-12-13
python qt gui快速编程PyQt编程指南 pdf扫描版及随书源代码源码.zip
2018-03-04
MySQL编译文件直接下载安装mysqlclient-1.3.7-cp35-none-win_amd64.whl
2018-01-28
Python for Probability,Statistics,and Machine Learning.pdf
2018-01-11
TensorFlow_ Large-Scale Machine Learning
2017-12-17
数据结构基础期末考试 2005-2012.7z
2017-12-09
小波变换详解及应用2页PPT
2017-11-27
C++编写的图书馆管理系统
2017-11-22
arduinoTimerOneLibrary_v1.1.0
2017-11-08
rosefunR的留言板
发表于 2020-01-02 最后回复 2020-04-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝