TensorFlow 的Tensor运算

1 简介

Tensorflownumpy区别:
相同点:都提供n位数组
不同点:
numpy支持ndarray,而Tensorflow里有tensor;
numpy不提供创建张量函数和求导,也不提供GPU支持。

显示Tensor 需要加eval函数.

ta = tf.zeros((2,2))
print(ta)
#Tensor("zeros_1:0", shape=(2, 2), dtype=float32)
print(ta.eval())
#numpy
a = np.zeros((2,2))
print(a)

TensorFlow定义常量:

logits =tf.constant([[12,3,2],[3,10,1],[1,2,5],[4,6.5,1.2],[3,6,1]],
dtype=tf.float64)

2. tensorflow 运算操作

如:

 tf.abs
 tf.sign
 tf.divide

tensorflow接口研读math_ops(一);

tf.concat

t1 = [[[1, 2, 3], [4, 5, 6]],[[1, 2, 3], [4, 5, 6]]]
t2 = [[[7, 8, 9], [10, 11, 12]],[[7, 8, 9], [10, 11, 12]]]
tf.concat([t1, t2], 2) 

输出:

<tf.Tensor 'concat_5:0' shape=(2, 2, 6) dtype=int32>

参考:

  1. Tensor数据相关的运算及函数讲解;
  2. tf.concat;
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页