Tensorflow1.x系列(7):TensorFlow持久化

引言

持久化,就是能够把当前模型以及模型的参数能够保持下来,用于下次使用。

1. 持久化代码实现-保存

TensorFlow提供 API,即tf.train.Saver()类

##持久化代码实现
import tensorflow as tf

v1=
v2=
result=v1+v2

init_op=global_variables_initializer()

saver=tf.train.Saver()

with tf.Session() as sess:
    sess.run(init_op)
    saver.save(sess,"path/.ckpt")

TensorFlow会自动保存一个.meta的文件,该文件保存结构;.ckpt文件只是保存参数。

2. 模型加载

##加载
saver=tf.train.import_meta_graph(".meta")

with tf.Session as sess:
	saver.restore(sess,"/path/.ckpt")
	
	print(sess.run(tf.get_default_graph().get_tensor_by_name("add:0"))

2.2 变量重命名

	v1 = tf.Variable(tf.constant(1.0, shape=[1]), name = "other-v1")
	v2 = tf.Variable(tf.constant(2.0, shape=[1]), name = "other-v2")
	saver = tf.train.Saver({"v1": v1, "v2": v2})
	print(v1)
	
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页