TensorFlow数据模型--张量

1. 张量(tensor)

定义张量:

全1:

a = tf.ones((2,2), dtype = tf.int16, name = 'a')
# 输出:
#  <tf.Tensor 'a:0' shape=(2, 2) dtype=int16>

除了维度,dtype, name 可选,空时,dtype 为tf.float32

常量:

a = tf.constant(1, shape = (2,3))
# 输出:
# <tf.Tensor 'Const_1:0' shape=(2, 3) dtype=int32>

全0:

a = tf.zeros((3,3))
# 输出:
# <tf.Tensor 'zeros_1:0' shape=(3, 3) dtype=float32>

定义变量:
tf.Variable:

a = tf.Variable(initial_value = 1, trainable = True)
# 输出:
# <tf.Variable 'Variable:0' shape=() dtype=int32_ref>

a = tf.ones((2,2))
# 输出:
# <tf.Tensor 'ones_4:0' shape=(2, 2) dtype=float32>

运算操作:

加法:

>>> result = tf.add(a,b,name='addTwo')
>>> print(result)
Tensor("addTwo:0", shape=(2,), dtype=float32)

注:shape(2,)是一个一维数组,长度为2。

张量,有三个属性,分别为:名称addTwo,维度shape,类型type。

张量本身并没有存储具体的数值,需要会话session来计算。

2. tensor支持的类型

tensor,支持14种不同类型,分别为

实数
(tf.float32, tf.float64),

整数
(tf.int8, tf.int16, tf.int32,tf.int64, tf.unit8),

布尔型
(tf.bool),

复数
(tf.complex64, tf.complex128).

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页