1. 题目
机器人在一个无限大小的网格上行走,从点 (0, 0) 处开始出发,面向北方。该机器人可以接收以下三种类型的命令:
-2:向左转 90 度
-1:向右转 90 度
1 <= x <= 9:向前移动 x 个单位长度
在网格上有一些格子被视为障碍物。
第 i 个障碍物位于网格点 (obstacles[i][0], obstacles[i][1])
机器人无法走到障碍物上,它将会停留在障碍物的前一个网格方块上,但仍然可以继续该路线的其余部分。
返回从原点到机器人的最大欧式距离的平方。
示例 2:
输入: commands = [4,-1,4,-2,4], obstacles = [[2,4]]
输出: 65
解释: 机器人在左转走到 (1, 8) 之前将被困在 (1, 4) 处
提示:
0 <= commands.length <= 10000
0 <= obstacles.length <= 10000
-30000 <= obstacle[i][0] <= 30000
-30000 <= obstacle[i][1] <= 30000
答案保证小于 2 ^ 31
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/walking-robot-simulation
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2. 代码
真是模拟场景题,技巧是使用集合记录障碍。
class Solution:
def robotSim(self, commands: List[int], obstacles: List[List[int]]) -> int:
x = 0
y = 0
#directions = ['n','e','s','w']
dx = [0,1,0,-1]
dy = [1,0,-1,0]
d_inx = 0
ob_set = set()
for ob in obstacles:
ob_set.add((ob[0],ob[1]))
def move(x,y,k, d_inx):
for i in range(1,k+1):
if (x+dx[d_inx],y+dy[d_inx]) in ob_set:
return x,y
x = x+dx[d_inx]
y = y+dy[d_inx]
return x,y
res = 0
for c in commands:
if c>0:
x,y = move(x,y,c,d_inx)
elif c == -1:
d_inx = (d_inx+1)%4
elif c == -2:
d_inx = (d_inx+3)%4
res = max(res,x**2+y**2)
return res