LeetCode123. 买卖股票的最佳时机 III(python,动态规划)

1. 题目

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。

注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:

输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
     随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

2. 解题思路

d p [ i ] [ k ] [ 0 ] dp[i][k][0] dp[i][k][0] 代表在位置i交易k次,且当前没拥有股票的最大收益。
d p [ i ] [ k ] [ 1 ] dp[i][k][1] dp[i][k][1] 代表在位置i交易k次,且当前拥有股票的最大收益。
这里,以卖出股票为交易一次。
注意初始化dp。

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        if len(prices) <= 1:
            return 0
        dp = [[[0 for j in range(2)] for k in range(3)] for i in range(len(prices))]
        # init 
        for i in range(len(prices)):
            for k in range(3):
                if i == 0:
                    dp[i][k][0] = 0
                    dp[i][k][1] = -prices[i]
                else:
                    if k == 0:
                        dp[i][k][0] = dp[i-1][k][0]
                        dp[i][k][1] = max(dp[i-1][k][0]-prices[i], dp[i-1][k][1])
                    else:
                        dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k-1][1]+prices[i])
                        dp[i][k][1] = max(dp[i-1][k][0]-prices[i], dp[i-1][k][1])
        return dp[len(prices)-1][2][0]

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页