rosefun96的博客

深度学习、算法交流q群596506387。
私信 关注
rosefunR
码龄4年

每次都多付出一点. 欢迎关注公众号《机器学习与算法之道》

  • 2,096,681
    被访问量
  • 723
    原创文章
  • 1,089
    作者排名
  • 838
    粉丝数量
  • 于 2017-05-08 加入CSDN
获得成就
  • 获得361次点赞
  • 内容获得234次评论
  • 获得1,940次收藏
荣誉勋章
兴趣领域
  • #人工智能
    #机器学习#算法#神经网络#Python#视觉/OpenCV#自然语言处理#NLP#深度学习#语音识别#图像处理#PyTorch
TA的专栏
  • 算法
    104篇
  • CSS
    4篇
  • Tensorflow2.x
    3篇
  • 深度学习
    46篇
  • 推荐系统
    18篇
  • NLP入门
    27篇
  • python
    107篇
  • python3.5学习
    31篇
  • 学习Pytorch
    18篇
  • JAVA学习
    24篇
  • SQL
    10篇
  • LeetCode
    144篇
  • tensorflow
    18篇
  • python3.5爬虫
    10篇
  • 剑指Offer
    5篇
  • python3.5文件夹操作
    4篇
  • Hadoop
    6篇
  • Spark
    17篇
  • Scala
    3篇
  • 数据结构
    9篇
  • 图神经网络GNN
    3篇
  • C++
    14篇
  • pyQT
    11篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 课程
  • 帖子
  • 收藏
  • 关注/订阅

Windows 重新设置Mysql密码

1. 任务如果忘记了MySQL的root密码,需要重新设置。2. 步骤(1)停止MySQL服务C:\WINDOWS\system32>net stop mysqlMySQL 服务正在停止.MySQL 服务已成功停止。(2)不启动grant-tables授权表下启动MySQLC:\WINDOWS\system32>mysqld --defaults-file="D:\Software\mysql-5.7.31-winx64\my.ini" --console --skip-gra
原创
82阅读
0评论
0点赞
发布博客于 昨天

python SQL工具包SQLAlchemy在flask Web应用框架下的基本使用

1. 任务在 flask 框架下,调用MySQL 数据库。2. 示例在安装MySQL 以及 Flask-SQLalchemy python包后,创建文件Database.py:# -*- coding: utf-8# !/usr/bin/env pythonfrom flask import Flask, render_template, request, flash, redirect, url_forfrom flask_sqlalchemy import SQLAlchemyapp =
原创
73阅读
0评论
0点赞
发布博客于 昨天

做了一个B站Up主推荐系统

1. 技术路线(1)爬取B站用户关注Up主列表使用B站的API进行获取数据https://api.bilibili.com/x/relation/followings?vmid(2)采用简单的ItemCF模型参考之前的文章[零基础入门推荐系统(1)]基于用户和基于物品的协同过滤方法(python代码实现)class ItemCF(object): """ 物品协同过滤,根据用户浏览过的物品推荐相似物品 """ def train(self, user_items
原创
88阅读
1评论
0点赞
发布博客于 3 天前

爬虫 user agent 汇总

爬虫需要切换 user agent,防止被反爬虫机制针对。user_agent_list = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/45.0.2454.85 Safari/537.36 115Browser/6.0.3', 'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) Appl
原创
25阅读
0评论
0点赞
发布博客于 4 天前

AJAX

1. 简介AJAX不是JavaScript的规范,它只是一个哥们“发明”的缩写:Asynchronous JavaScript and XML,意思就是用JavaScript执行异步网络请求。如果仔细观察一个Form的提交,你就会发现,一旦用户点击“Submit”按钮,表单开始提交,浏览器就会刷新页面,然后在新页面里告诉你操作是成功了还是失败了。如果不幸由于网络太慢或者其他原因,就会得到一个404页面。这就是Web的运作原理:一次HTTP请求对应一个页面。如果要让用户留在当前页面中,同时发出新的HT
原创
13阅读
0评论
0点赞
发布博客于 4 天前

Vue.js简介

1. 简介Vue.js(/vjuː/,或简称为Vue)是一个用于创建用户界面的开源JavaScript框架,也是一个创建单页应用的Web应用框架。Vue.js是一款流行的JavaScript前端框架,旨在更好地组织与简化Web开发。Vue所关注的核心是MVC模式中的视图层,同时,它也能方便地获取数据更新,并通过组件内部特定的方法实现视图与模型的交互。2. 特性组件// 定义一个名为 button-counter 的新组件Vue.component('button-counter', { da
原创
19阅读
0评论
0点赞
发布博客于 4 天前

Centos7安装PHP

(1)下载和安装PHP$ sudo yum install http://rpms.remirepo.net/enterprise/remi-release-7.rpm$ yum --disablerepo="*" --enablerepo="remi-safe" list php[7-9][0-9].x86_64$ sudo yum-config-manager --enable remi-php74(2)连接Nginx 和 MySQL$ sudo yum install php php-m
原创
22阅读
0评论
0点赞
发布博客于 5 天前

CSS HTML布局

1. 实例<!DOCTYPE html><html><head><style>* { box-sizing: border-box;}body { font-family: Arial; padding: 10px; background: #f1f1f1;}/* Header/Blog Title */.header { padding: 30px; text-align: center; backgrou
原创
17阅读
0评论
0点赞
发布博客于 5 天前

CSS组件汇总

1. CSS@media@media CSS @规则 可用于基于一个或多个 媒体查询 的结果来应用样式表的一部分。 使用它,您可以指定一个媒体查询和一个CSS块,当且仅当该媒体查询与正在使用其内容的设备匹配时,该CSS块才能应用于该文档。@media 规则可置于您代码的顶层或位于其它任何@条件规则组内。/* At the top level of your code */@media screen and (min-width: 900px) { article { padding: 1
原创
12阅读
0评论
0点赞
发布博客于 6 天前

JavaScript系列(4):返回Top组件

1. 任务添加返回最顶端的按钮。2. 实现// 固定top按钮位置 <style> /*返回顶部*/ #gotop{ position:fixed; bottom:60px; right:12px; display:none; } </style> <img src="images/go-to-
原创
13阅读
0评论
0点赞
发布博客于 8 天前

HTML入门(2):常见组件

1. 自动适应设备宽度在head部分添加<meta name="viewport" content="device-width, initial-scale=1">参考:Viewport_meta_tag;
原创
15阅读
0评论
0点赞
发布博客于 8 天前

CSS不同实例实现

1. 背景实例(1)设置背景颜色<html><head><style type="text/css">body {background-color: yellow}h1 {background-color: #00ff00}h2 {background-color: transparent}p {background-color: rgb(250,0,255)}p.no2 {background-color: gray; padding: 20px
原创
14阅读
0评论
0点赞
发布博客于 12 天前

JavaScript系列(2):关于Node.js,NPM

1. Node.js简介Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台 JavaScript 运行环境。Node.js采用Google开发的V8运行代码,使用事件驱动、非阻塞和异步输入输出模型等技术来提高性能,可优化应用程序的传输量和规模。这些技术通常用于资料密集的即时应用程序。Node.js大部分基本模块都用JavaScript语言编写。在Node.js出现之前,JavaScript通常作为客户端程序设计语言使用,以JavaScript写出的程序常在用户的浏览器上运
原创
28阅读
0评论
0点赞
发布博客于 2 月前

JavaScript系列(2):JavaScript 库jQuery

1. 简介jQuery 是目前最受欢迎的 JavaScript 框架。它使用 CSS 选择器来访问和操作网页上的 HTML 元素(DOM 对象)。jQuery 同时提供 companion UI(用户界面)和插件。参考:Wiki jQuery;
原创
6阅读
0评论
0点赞
发布博客于 2 月前

HTML入门(1):基本介绍

1. HTML介绍HTML(Hyper Text Markup Language),超文本标记语言,是一种用于创建网页的标准标记语言。HTML是一种基础技术,常与CSS、JavaScript一起被众多网站用于设计网页、网页应用程序以及移动应用程序的用户界面。网页浏览器可以读取HTML文件,并将其渲染成可视化网页。HTML可以嵌入如JavaScript的脚本语言。网页浏览器也可以引用层叠样式表(CSS)来定义文本和其他元素的外观与布局。HTML文件的后缀为.html 或者缩写.htm。2. HTML
原创
34阅读
0评论
0点赞
发布博客于 2 月前

Git上传大文件到GitHub

1. 问题直接用git上传pdf格式的电子书到GitHub有文件大小的限制。2. 解决方法$ git lfs migrate import --include="*.pdf"再进行上传 pdf文件。如果碰到类似error:batch response: Git credentials for https://github.com/rosefun/deeplearning_code not found.error: failed to push some refs to 'https://g
原创
33阅读
0评论
0点赞
发布博客于 2 月前

python3爬虫(6):智能选择优质基金

智能选择优质基金1. 关于本项目​ 本项目希望能够通过每天爬取基金数据,通过一些金融知识或者机器学习模型,给出当天优质基金。2. 基金数据爬取​ python3运行code中CrawlingFund.py 代码。​ 爬取网站:好买基金 https://www.howbuy.com/fund/fundranking​ 获取数据有,股票型,债券型,混合型,理财型,货币性,指数型,结构型,对冲型,QDII型基金,数据格式CSV文件。爬取的信息:基金代码,基金名称,日期,净值,近一周,近一月,近三月
原创
145阅读
1评论
0点赞
发布博客于 2 月前

python3爬虫(5): Beautiful Soup介绍

1. 简介Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.安装方法:pip install beautifulsoup4网页解析器由于Beautiful Soup是对HTML文件进行提取数据,因此,需要安装网页解析器。Beautiful Soup支持Python标准库中的HTML解析器,还支持一些第三方的解析器,其中一个是 lxml .根据操作系统不同,可以选择下列方法来安装lxml: $ pip install lxml另一个可供选择的解析器是纯P
原创
23阅读
0评论
0点赞
发布博客于 2 月前

Tensorflow2.x: TensorFlow Addons介绍

1. Addons在TensorFlow2.x版本引入了 Special Interest Group (SIG),特殊兴趣小组,主要实现新发布论文中的算法。目前 SIG Addons包已经有这几个模块:tfa.activationstfa.callbackstfa.imagetfa.layerstfa.lossestfa.metricstfa.optimizerstfa.rnntfa.seq2seqtfa.text值得注意的是,TensorFlow1.x版本中的tf.contr
原创
88阅读
0评论
0点赞
发布博客于 2 月前

Tensorflow 2.x API: tf.compat.v1.nn.bidirectional_dynamic_rnn

1. APIAPI和TensorFlow 1.x版本的API tf.nn.bidirectional_dynamic_rnn 一致。值得注意的是,该API已经被遗弃了。但可以使用keras.layers.Bidirectional(keras.layers.RNN(cell)) 来代替!tf.compat.v1.nn.bidirectional_dynamic_rnn( cell_fw, cell_bw, inputs, sequence_length=None, initial_state_
原创
41阅读
0评论
0点赞
发布博客于 2 月前

Tensorflow2.x API介绍:tf.compat.v1.nn.rnn_cell.MultiRNNCell

1. API实现多层RNN,和tensorflow版本1中的tf.contrib.rnn.multirnncell一致。tf.compat.v1.nn.rnn_cell.MultiRNNCell( cells, state_is_tuple=True)参数cells :列表形式的RNN 单元,并通过这个顺序进行压缩。state_is_tuple :如果是True,所用单元(cells)的状态都返回,形式为len(cells)个元组;如果是False,所有的状态会在column轴进行co
原创
57阅读
0评论
0点赞
发布博客于 2 月前

TensorFlow2.x API:tf.nn.embedding_lookup

1. API此函数用于并行查找params中的张量列表。tf.nn.embedding_lookup( params, ids, max_norm=None, name=None)示例:params :[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]ids :[0, 3, 4]output:3*2的矩阵:[[1, 2], [7, 8], [9, 10]]参考:tf.nn.embedding_lookup...
原创
33阅读
0评论
0点赞
发布博客于 2 月前

Window使用Git管理GitHub项目

1. Git介绍与安装下载git ;安装目录避免中文字符!2. GitHub创建仓库GitHub中Git使用说明文档:在本地创建仓库,并添加README.md:$ git init$ git add README.md$ git commit -m "v0.0.1"$ git branch -M main$ git remote add origin https://github.com/rosefun/couplet.git$ git push -u origin main提
原创
41阅读
0评论
0点赞
发布博客于 2 月前

NLP评估指标:双语替换评测(BLEU)

1. BLEU定义双语替换评测(英语:bilingual evaluation understudy,缩写:BLEU)是用于评估自然语言的字句用机器翻译出来的品质的一种算法。通过将各个译文片段(通常是句子)与一组翻译品质好的参考译文进行比较,计算出各个片段的分数。 接着这些分数平均于整个语料库,估算翻译的整体品质。此算法不考虑字句的可理解性或语法的正确性。双语替换评测的输出分数始终为0到1之间的数字。该输出值意味着候选译文与参考译文之间的相似程度,越接近1的值表示文本相似度越高。2. 示例双语替
原创
147阅读
0评论
0点赞
发布博客于 2 月前

LaTeX遇到的一些操作记录

1. 算法图命名为中文\makeatletter\renewcommand{\ALG@name}{算法}\makeatother然后,再用算法包,\begin{algorithm} \caption{name}\label{a} \begin{algorithmic}[1] \State a \end{algorithmic}\end{algorithm}
原创
43阅读
0评论
0点赞
发布博客于 2 月前

Scala入门(3):Scala程序编译

1. 入门程序object Hello { def main(args:Array[String]) { println("Hello, Scala。") } }对于包含 main 方法的 object 声明,引入了一个通常被称为单例对象(singleton object)的概念,也就是有且仅有一个实例的类。main 方法并没有声明为 static。这是因为 Scala 中不存在静态成员(无论方法还是属性,methods or fields)这一概
原创
81阅读
0评论
0点赞
发布博客于 2 月前

python获取论文的Bibtex格式

1. 简介批量从百度学术查询输入论文,获得相应论文的Bibtex格式,并保存。from bs4 import BeautifulSoupfrom selenium import webdriverimport time'''判断元素是否存在'''def isElementExist(driver, element): flag = True try: driver.find_element_by_xpath(element) return f
转载
128阅读
0评论
1点赞
发布博客于 2 月前

pgmpy包:贝叶斯网络最大似然估计

1. MLE假设简单的贝叶斯网络模型,根据A,B的观测值,估计CPT(条件概率表);如果采用最大似然估计,分成几步: state_counts = self.state_counts(node) # if a column contains only `0`s (no states observed for some configuration # of parents' states) fill that column uniformly instea
原创
127阅读
0评论
0点赞
发布博客于 2 月前

2020年个人总结

1. 完善了几个专栏算法专栏基本包含了经典算法,比如AdaBoost算法,K近邻,EM算法,Kmeans算法,感知机,SVM,逻辑斯蒂回归等。python3.5学习专栏基本从python安装到python类型介绍,类,模块等介绍。推荐系统现在推荐系统专栏收纳了17篇文章。2. 开发尝试2.1 semisupervised包的开发着手开发一个半监督学习包,Semisupervised Github ,已经可以通过pip install semisupervised 进行安装了。目前安装量不
原创
78阅读
0评论
0点赞
发布博客于 2 月前

层叠样式表CSS简介

1. CSS简介层叠样式表(英语:Cascading Style Sheets,缩写:CSS;又称串样式列表、级联样式表、串接样式表、阶层式样式表)是一种用来为结构化文档(如HTML文档或XML应用)添加样式(字体、间距和颜色等)的计算机语言,由W3C定义和维护。CSS不能单独使用,必须与HTML或XML一起协同工作,为HTML或XML起装饰作用。本文主要介绍用于装饰HTML网页的CSS技术。其中HTML负责确定网页中有哪些内容,CSS确定以何种外观(大小、粗细、颜色、对齐和位置)展现这些元素。CSS可
原创
6阅读
0评论
0点赞
发布博客于 2 月前

Tex Live卸载与TexLive2020的安装

1. 卸载 Tex Live2018已有2018的Tex Live版本,为了安装2020版本,可以先进行卸载:windows下Tex Live的安装目录(目录每个人都不一样)E:\texlive\2018\tlpkg\installer然后运行里边的uninst.bat文件。2. 安装TexLive 2020重新在官网上下载,然后运行里边的install-tl-windows.bat文件。如果是下载了exe,直接运行即可。...
原创
1160阅读
1评论
0点赞
发布博客于 2 月前

python3获取文件的大小

1. os.path.getsize()'''获取文件的大小,结果保留两位小数,单位为MB'''def get_FileSize(filePath): #filePath = unicode(filePath,'utf8') if isinstance(filePath, str): text = filePath decoded = False else: text = filePath.decode('utf8') decoded = True fsize = os.path
原创
233阅读
1评论
0点赞
发布博客于 2 月前

分享几个交流群

1. 深度学习QQ交流群本群是对深度学习上遇到问题进行交流,不管你研究机器学习或者深度学习领域中的数据挖掘、自然语言处理、计算机视觉,都非常欢迎您的加入。上传文件时,请按照文件夹分类进行上传。群号:5965063872. 推荐系统QQ交流群推荐系统算法与实践及行业交流群。群号:8236922703. python入门QQ交流群python学习交流,python有趣好玩项目分享交流,python开发等内容交流。群号:7509287224. 公众号主要分享python原理与应用
原创
221阅读
0评论
0点赞
发布博客于 2 月前

(待完善)半监督学习(Semi-supervised learning)综述

半监督学习(Semi-supervised learning)综述1. 关于半监督学习半监督学习是机器学习的分支,主要利用有标签样本以及无标签样本用于用于特定学习的任务。如下图,半监督学习有利于获得更准确的分类边界。在这里插入图片描述1.2 半监督学习的假设(1)平滑假设如何输入的两个点在输入空间是接近的,那个它们的标签是一致的。(2)低密度假设(3)流型假设2. 半监督学习的方法2.1 Inductive 方法Inductive方法构造一个分类器,并用于对每个样本进行预测。无标签样
原创
566阅读
0评论
1点赞
发布博客于 2 月前

Flink简介

Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。[1][2]Flink以数据并行和管道方式执行任意流数据程序[3],Flink的流水线运行时系统可以执行批处理和流处理程序。[4][5]此外,Flink的运行时本身也支持迭代算法的执行。[6]Flink提供高吞吐量、低延迟的流数据引擎[7]以及对事件-时间处理和状态管理的支持。Flink应用程序在发生机器故障时具有容错能力,并且支持exactly-once语义。[8]程序可以用J
原创
9阅读
0评论
0点赞
发布博客于 2 月前

Linux buffer和Cache的区别

Buffer,缓冲区Buffer和特定的块设备相关联,包含文件系统的元数据的缓存以及在运行中的页面跟踪。Buffer会记住文件夹里的内容,文件的权限,并跟踪从特定块设备中写入或读取到的内存。Cache,缓存Cache只包含已存放的数据(文件本身的内容)。参考:What is the difference between buffer and cache memory in Linux...
原创
48阅读
0评论
0点赞
发布博客于 2 月前

Go语言入门

1. Go简介Go(又称Golang)是Google开发的一种静态强类型、编译型、并发型,并具有垃圾回收功能的编程语言。罗伯特·格瑞史莫、罗勃·派克(Rob Pike)及肯·汤普逊于2007年9月开始设计Go,稍后Ian Lance Taylor、Russ Cox加入项目。Go是基于Inferno操作系统所开发的。Go于2009年11月正式宣布推出,成为开放源代码项目,支持Linux、macOS、Windows等操作系统。特点静态类型和运行时效率。(如:C++)可读性和易用性。(如:Python
原创
63阅读
0评论
0点赞
发布博客于 2 月前

超大规模深度学习在美团的应用

参考:超大规模深度学习在美团的应用
转载
60阅读
0评论
0点赞
发布博客于 2 月前

搜索Instagram用户名API

1. 细节主要是python算法部分,以及flask用于网页端。待完善:PHP适配客户端2. 实践经过调试,API已经开发示例:搜索结果页面展示:然后输入instagram.com/{username}即可到达Instagram用户名的主页:开发链接:根据明星姓名搜索Instagram用户名3. 完善有什么意见的欢迎私信和评论!(最近比较忙,不会进行开发完善)...
原创
141阅读
0评论
0点赞
发布博客于 3 月前

HTML系列:表单提交

参考:HTML
原创
14阅读
0评论
0点赞
发布博客于 2 月前

PHP系列:入门

1. PHP介绍PHP(全称:PHP:Hypertext Preprocessor,即“PHP:超文本预处理器”)是一种开源的通用计算机脚本语言,尤其适用于网络开发并可嵌入HTML中使用。PHP的语法借鉴吸收C语言、Java和Perl等流行计算机语言的特点,易于一般程序员学习。PHP的主要目标是允许网络开发人员快速编写动态页面,但PHP也被用于其他很多领域。PHP的应用范围相当广泛,尤其是在网页程序的开发上。一般来说PHP大多运行在网页服务器上,透过运行PHP代码来产生用户浏览的网页。PHP可以在多数的
原创
2阅读
0评论
0点赞
发布博客于 3 月前

Linux crontab命令定时运行脚本, python程序

1. crontab文件Linux下的定时执行主要是使用crontab文件中加入定制计划来执行,查看/etc/crontab文件:$ cat /etc/crontabSHELL=/bin/bashPATH=/sbin:/bin:/usr/sbin:/usr/binMAILTO=rootcrontab命令:crontab –e //修改 crontab 文件,如果文件不存在会自动创建。 crontab –l //显示 crontab 文件。 crontab -r
原创
131阅读
0评论
0点赞
发布博客于 3 月前

Python自动发送邮件

1. 邮箱配置必要邮箱开通 SMTP 服务。关于SMTP:SMTP是一种提供可靠且有效的电子邮件传输的协议。SMTP是建立在FTP文件传输服务上的一种邮件服务,主要用于系统之间的邮件信息传递,并提供有关来信的通知。SMTP独立于特定的传输子系统,且只需要可靠有序的数据流信道支持,SMTP的重要特性之一是其能跨越网络传输邮件,即“SMTP邮件中继”。使用SMTP,可实现相同网络处理进程之间的邮件传输,也可通过中继器或网关实现某处理进程与其他网络之间的邮件传输。开通方式以 qq 邮箱为例:在网页
原创
159阅读
0评论
0点赞
发布博客于 3 月前

强化学习系列(1):简介

1. 强化学习强化学习,reinforcement learning,RL,强调如何基于环境而行动,以取得最大化的预期利益。在机器学习问题中,环境通常被规范为马尔科夫决策过程,所以,强化学习算法在这种情况下使用动态规划技巧。强化学习和标准的监督式学习之间的区别在于,它并不需要出现正确的输入/输出对,也不需要精确校正次优化的行为。强化学习更加专注于在线规划,需要在探索(在未知的领域)和遵从(现有知识)之间找到p;h2. 强化学习模型基本的强化学习模型包括:1.环境状态的集合S;2.动作的集合A;
原创
100阅读
0评论
0点赞
发布博客于 3 月前

Keras构建DNN模型的两种方式

1. 方式一from keras.layers.core import Dense, Dropoutfrom keras.layers.normalization import BatchNormalizationfrom keras.models import Sequential,Modelfrom keras.layers import merge,Input,Add, LeakyReLUclass DNN(object): """ Define a DNN model f
原创
282阅读
0评论
0点赞
发布博客于 3 月前

Keras监控验证集损失及保存最佳模型

1. EarlyStopping如果验证集的监控指标不再提升,就让模型停止训练。from keras.callbacks import ModelCheckpoint, EarlyStoppingcustom_early_stopping = EarlyStopping( monitor='val_accuracy', patience=8, min_delta=0.001, mode='max')2. 保存最佳模型model = getModel()m
原创
305阅读
0评论
1点赞
发布博客于 3 月前

Github项目文档的管理

1. 用github账号注册readthedocshttps://readthedocs.org/2. 安装Sphinx包具体参考:https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html3. 把文档上传到GitHub4. readthedocs关联GitHub的项目https://readthedocs.org/dashboard/5. readthedocs编译6. 添加文档主题(可选)
原创
114阅读
0评论
0点赞
发布博客于 3 月前

Linux服务器定时启动Python程序

一、让Python随Linux开机自动运行准备好要自启的脚本auto.py用root权限编辑以下文件sudo vim /ect/rc.local在exit 0上面编辑启动脚本的命令/usr/bin/python3.5 /home/edgar/auto.py > /home/edgar/auto.log最后重启Linux,脚本就能自动运行并打印日志了。二、让Python脚本定时启动准备好定时启动的脚本auto.py用root权限编辑以下文件sudo vim /etc/crontab
转载
304阅读
0评论
0点赞
发布博客于 3 月前

Linux nohup指令实现Python代码挂起在后台

1. 方法nohup python *.py &让代码一直在后台运行。运行提示:[1] 8324[root@server-1 bin]# nohup: ignoring input and appending output to ‘nohup.out’2. 查看进程# ps aux | grep 8324root 8324 4.5 2.6 224324 27068 pts/0 S 15:18 0:01 python /data/project/
原创
246阅读
0评论
0点赞
发布博客于 3 月前

python程序进程命名

# 命名一个进程import multiprocessingimport timedef foo(): name = multiprocessing.current_process().name print("Starting %s
" % name) time.sleep(3) print("Exiting %s
" % name)if __name__ == '__main__': process_with_name = multiproces
转载
154阅读
0评论
0点赞
发布博客于 3 月前

Centos安装python3和使用pip3

1. 安装python3从EPEL仓库安装安装最新版本的EPEL$ sudo yum install epel-release用yum安装python 3.6:$ sudo yum install python362. 切换默认的python为python3.6版本cd /usr/bin 备份原来的文件mv python python.bak 建立软连接ln -s /usr/bin/python3.6 /usr/bin/python3. pyth
原创
6027阅读
0评论
0点赞
发布博客于 3 月前

Python:markdown格式文件转成rst格式

1. 前言PyPi 需要生成readme.rst 格式的文档,尝试使用readme.md,都会报错:Upload failed (400): The description failed to render in the default format of reStructuredText.只能把写好的markdown格式进行转换:import requestsimport os#os.chdir(r"F:\")def md_to_rst(from_file, to_file):
转载
5942阅读
0评论
0点赞
发布博客于 3 月前

python包开发的坑

1. 调试和之前安装的冲突安装了之前自己开发的包,然后,重新调试,模块路径改动后,python还是默认安装包的程序。python导入模块的顺序:(1).py 所在文件的目录(2)PYTHONPATH 中的目录(3)python安装目录,UNIX下,默认路径一般为/usr/local/lib/python/(4)3.x 中.pth 文件内容...
原创
5933阅读
0评论
0点赞
发布博客于 3 月前

Pypi官方教程中文版:封装代码成python包

1. Pypi介绍PyPI, Python Package Index,是python的正式第三方软件包的软件存储库。一些软件包管理器如pip,就是默认从PyPI下载软件包。Pypi官方网站;2. 封装代码并上传到Pypi上(1)注册账号在Pypi中注册账号,并且需要激活邮箱,其他的就不用管了。(2)代码包管理示例:packaging_tutorial└── mypackage └── __init__.py注意的是,模块(mypackage)是需要__init__.py代码的
原创
6309阅读
0评论
0点赞
发布博客于 3 月前

半监督学习模型: 半监督的SVM

1. SVM模型SVM 模型优化的损失函数:如果结构损失中的2范数换成1范数:2. 半监督的SVM考虑到无标签样本,如果无标签样本在SVM模型中预测成负类或者正类,只要它与决策面的距离少于单位距离, 都会有一个损失,并且这个损失是预测成负类和预测成正类中最小的那个损失(也就是如果预测对了,这个损失可以是0)。参考:原论文 Semi-Supervised Support Vector Machines ;半监督支持向量机(S3VMs);...
原创
6438阅读
0评论
0点赞
发布博客于 3 月前

Flask Error: [WinError 10013] 以一种访问权限不允许的方式做了一个访问套接字的尝试

1. 报错原因端口被占了。2. 解决方法app.run(port=5006,host='0.0.0.0')多换端口,默认是5000,之前试了6666,还是不行,换成5006就好了。
原创
325阅读
0评论
0点赞
发布博客于 3 月前

Git遇到的问题汇总

问题 1.Please make sure you have the correct access rightsand the repository exists.解决方法:git clone https://而不是 git的地址。
原创
164阅读
0评论
0点赞
发布博客于 3 月前

Java系列:入门Java必看,关于Java,JDK, JRE, JVM几个概念(10)

1. 关于JavaJava是一种广泛使用的计算机编程语言,拥有跨平台、面向对象、泛型编程的特性,广泛应用于企业级Web应用开发和移动应用开发。任职于Sun微系统的詹姆斯·高斯林等人于1990年代初开发Java语言的雏形,最初被命名为Oak,目标设置在家用电器等小型系统的编程语言,应用在电视机、电话、闹钟、烤面包机等家用电器的控制和通信。由于这些智能化家电的市场需求没有预期的高,太阳计算机系统(Sun公司)放弃了该项计划。随着1990年代互联网的发展,Sun公司看见Oak在互联网上应用的前景,于是改造了
原创
165阅读
0评论
0点赞
发布博客于 3 月前

Java系列:Java调用python程序

1. 任务调用已有的 demo.py 程序:程序内容:import numpy as nparr = np.array([[1,2],[3,4]])print("arr:",arr)2. Java 调用python程序package leetCode;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStreamReader;public class TestPythonCo
原创
80阅读
0评论
0点赞
发布博客于 3 月前

Java系列:如何导入jar包

1. 文件夹方式开发工具: Eclipse IDE新建一个 lib 文件夹,里边添加需要的jar 包,如图选中需要添加的jar文件,右键,添加到 Build Path中,成功!参考:Eclipse下导入外部jar包的3种方式
原创
85阅读
0评论
0点赞
发布博客于 3 月前

python3爬虫(4):获取网易云音乐歌手所有歌曲及歌曲的精选评论

1. 需要的python包>pip install pycryptodome>pip install requests>>pip install lxml2. 实践1:爬取网易云平台的所有歌手id"""sources:https://github.com/wanhaiwei/wangyiyun/blob/master/get_all_singer.py"""import requestsimport reimport csvimport jsoncla
原创
398阅读
0评论
0点赞
发布博客于 3 月前

模型部署上线的几种服务发布方式

1.JSON(JavaScript Object Notation)格式。它拥有两个格式处理函数:json.dumps:将 Python 对象编码成 JSON 字符串;json.loads:将已编码的 JSON 字符串解码为 Python 对象。pickle 模块pickle.dump(obj, file[, protocol]):序列化对象,并将结果数据流写入到文件对象中。参数 protocol 是序列化模式,默认值为0,表示以文本的形式序列化。protocol 的值还可以是1或2,表示以二进
转载
194阅读
0评论
0点赞
发布博客于 4 月前

Nginx介绍

$ yum -y install nginxnginx.conf 部分配置server { listen 80; server_name sam_rui.com; # 外部地址 access_log /var/log/nginx/access.log; location / { proxy_pass http://127.0.0.1:8000;# 监听目标服务器 proxy_set_header Host $host;
原创
55阅读
0评论
0点赞
发布博客于 3 月前

Nginx部署网页到Centos(Linux)服务器

1. 关于网页2. 部署步骤(1)按照nginx// 用yum来安装yum install nginx -y启动 nginx:nginx: [emerg] bind() to 0.0.0.0:80 failed (98: Address already in use)(2)部署网页Nginx网页的地址:/usr/share/nginx/html可以在浏览器中使用 ip地址/网页名 来打开该网页。(3)python代码部署a. 在原来项目中,把需要的python包进行罗列:&g
原创
131阅读
0评论
0点赞
发布博客于 3 月前

Linux安装python

以下方法在CentOS能成功安装python3.6:由于一般的Linux服务器自带的python是2.x版本,因此,我们需要手动安装3.x版本。(1)安装 SCL 使用程序yum install centos-release-scl(2)安装python 3.6yum install rh-python36(3) 激活python 3.6版本scl enable rh-python36 bash(4)确认是否成功python ––version参考:How to inst
原创
47阅读
0评论
0点赞
发布博客于 4 月前

nginx: [emerg] bind() to [::]:80 failed (98: Address already in use) 错误

(1)查看80端口是不是被占用了$ netstat -anp |grep 80tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 2679/nginx: master tcp 0 0 144.34.160.104:58030 142.250.72.227:443 TIME_WAIT - tcp 0
原创
32阅读
0评论
0点赞
发布博客于 4 月前

Windows编译文件makefile

(1) 下载 Cygwinhttps://cygwin.com/install.html(2) 用Cygwin编译:make -f Makefile参考:makefile
原创
92阅读
0评论
0点赞
发布博客于 4 月前

解决Linux:[Errno 12] Cannot allocate memory问题

1. 问题起因使用Linux(CentOS系统)安装Java,命令行提示:Error downloading packages: libXcursor-1.1.15-1.el7.x86_64: [Errno 5] [Errno 12] Cannot allocate memory 1:xorg-x11-font-utils-7.5-21.el7.x86_64: [Errno 5] [Errno 12] Cannot allocate memoryCannot allocate me
原创
1260阅读
4评论
1点赞
发布博客于 4 月前

Flask系列(1): 基础介绍

1. Flask简介Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2 模板引擎。Flask使用BSD授权。Flask被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数据库、窗体验证工具。然而,Flask保留了扩增的弹性,可以用Flask-extension 页面存档备份,存于互联网档案馆加入这些功能:ORM、窗体验证工具、文件上传、各种开放式身份验证技术。特色内置开发
原创
48阅读
0评论
0点赞
发布博客于 4 月前

python程序设计(浙江大学).rar

python程序设计PPT(浙江大学python课件)对应慕课该课程PPT。 包含9章内容: python语言介绍; 语句; 字符串,列表,元组; 集合,字典; 函数,命名空间和作用域; 文件读写操作; Web应用; 网络爬虫;等
rar
发布资源于 4 月前

pytorch版本查看和升级到相应的版本

1. 版本查看import torchprint(torch.__version__)结果:'1.0.0'2. 升级到特定的版本$ pip install --upgrade torch==1.4.0结果:Installing collected packages: torch Found existing installation: torch 1.0.0 Uninstalling torch-1.0.0: Successfully uninstalled t
原创
1470阅读
0评论
2点赞
发布博客于 4 月前

(待完善)[零基础入门推荐系统(2)]基于二向图的召回算法(python代码实现)

1. 基于图的模型用户行为很容易用二分图表示,从而给用户进行个性化推荐。2. 用户行为数据的二分图表示用户行为数据由一系列的二元组组成,其中,每个二元组(u,i)(u,i)(u,i)表示用户uuu对物品iii产生过行为。令G(V,E)G(V,E)G(V,E)表示用户物品二分图,其中,V=VU∪VIV=V_U\cup V_IV=VU​∪VI​由用户顶点集合VUV_UVU​ 和物品顶点集合VIV_IVI​组成。对应数据集中每一个二元组(u,i)(u,i)(u,i),图中都有对应的边e(vu,vi)e(v
原创
5996阅读
0评论
0点赞
发布博客于 4 月前

协同指导用于极限噪声标签样本学习

Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels1. 方法协同指导(co-teaching)同时使用两个网络,一个网络训练后,选取损失比较小的样本,指导另一个网络接下来的训练。具体的算法:可以看出:网络 f 先选取损失较少的样本,然后网络 g 计算这部分样本的损失,并将损失进行反向传播并参数更新。同样,网络 f 对网络 g 中损失较少的样本进行计算损失和反向传播。2. 实验在M
原创
5882阅读
0评论
0点赞
发布博客于 4 月前

面试题:终极杀器BFS解决动态规划问题

1. BFS和动态规划BFS,Breadth-First Search, 广度优先搜索,用于解决图遍历的算法,简单的说,BFS是从根节点开始,沿着树的宽度遍历树的节点。如果所有节点均被访问,则算法中止。具体可以参看:图:广度优先遍历BFS和深度优先遍历DFS及python实现动态规划,通常基于一个递推公式及一个或多个初始状态。 当前子问题的解将由上一次子问题的解推出。具体参看动态规划算法BFS和动态规划的联系动态规划需要找出状态转移矩阵,有的时候状态转移方程很多找,比如背包问题的一些拓展题。与动
原创
142阅读
0评论
0点赞
发布博客于 4 月前

[零基础入门推荐系统(1)]基于用户和基于物品的协同过滤方法(python代码实现)

1. 前言: 为什么会有该系列?最近,打算写《零基础入门推荐系统》系列,为了系统地介绍推荐系统知识,以及加强基础的实践能力。该系列将结合一些书籍,比如项亮的《推荐系统实践》,由于项亮的推荐系统实践更偏项目以及工程设计,对模型介绍比较少,为了弥补这一不足,《零基础入门推荐系统》会更多地介绍一些基础推荐算法模型,比如FM,DeepFM,DIN等模型。当然,每个模型会结合数学原理和python代码进行介绍,强化理论知识和实践能力。2. 推荐系统的几种评测指标对用户uuu推荐NNN个物品(记为R(u)R(u
原创
6074阅读
0评论
1点赞
发布博客于 4 月前

Python中的__new__和__init__初始化的区别

__init__ 方法为初始化方法, __new__方法才是真正的构造函数。1、__new__方法默认返回实例对象供__init__方法、实例方法使用。class Human2(object): def __init__(self,age,sex): self.age = age self.sex = sex print("self", self) def speak(self): print("I am:",self.age,self.sex)示例:h = Hum
原创
75阅读
0评论
0点赞
发布博客于 4 月前

Leetcode144. 二叉树的前序遍历(迭代,递归python实现)

1. 题目给定一个二叉树,返回它的 前序 遍历。示例:输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,2,3]进阶: 递归算法很简单,你可以通过迭代算法完成吗?来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/binary-tree-preorder-traversal著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。2. 递归递归的方法比较简单,前
原创
73阅读
0评论
0点赞
发布博客于 4 月前

面试题:最长公共子序列LCS的所有花样(求公共最长长度,输出对应的子序列)

1. 求最长公共子串的长度对于输入两个字符串 X, Y, 最长公共子序列(Longest Common Subsequence)中子序列只需保持相对顺序,并不要求连续。首先,这是一个经典的动态规划题,记 dp[i][j]dp[i][j]dp[i][j] 是字符串1 XXX 从0到索引 iii 和字符串2 Y从 0 到索引 jjj 的最长公共子串的长度。dp[i,j]={dp[i−1,j−1]+1 if x[i]=y[j]max⁡{dp[i,j−1],dp[i−1,j]} 
原创
132阅读
0评论
0点赞
发布博客于 4 月前

牛顿法与拟牛顿法(含代码实现)

1. 牛顿法牛顿法(英语:Newton’s method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。牛顿法的基本思想是使用函数 f(x){\displaystyle f(x)}f(x) 的泰勒级数的前面几项来寻找方程 f(x)=0{\displaystyle f(x)=0}f(x)=0 的根。牛顿法主要应用在两个方面,1:求方程的根;2:最优化(求解最值问题)。1.1 求方程f(x)=0{\displaystyle f(
原创
6276阅读
0评论
1点赞
发布博客于 4 月前

TCP与UDP的区别

0. 简介TCP/IP 是互联网相关的各类协议族的总称,比如:TCP,UDP,IP,FTP,HTTP,ICMP,SMTP 等都属于 TCP/IP 族内的协议。TCP/IP模型是互联网的基础,它是一系列网络协议的总称。这些协议可以划分为四层,分别为链路层、网络层、传输层和应用层。1. TCP 协议传输控制协议(英语:Transmission Control Protocol,缩写:TCP)是一种面向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793定义。在简化的计算机网络OSI模
原创
81阅读
0评论
1点赞
发布博客于 5 月前

Linux进程间通信的7种方式

0. 简介进程间通信常见方式如下:管道FIFO消息队列信号量共享内存UNXI域套接字套接字(Socket)1. 管道管道是一种古老的IPC通信形式。它有两个特点:半双工,即不能同时在两个方向上传输数据。有的系统可能支持全双工。只能在父子进程间。经典的形式就是管道由父进程创建,进程fork子进程之后,就可以在父子进程之间使用了。使用popen函数和pclose函数结合来执行系统命令,就用到了管道,它们声明如下:FILE *popen(const char *command,co
原创
157阅读
0评论
0点赞
发布博客于 5 月前

LeetCode410. 分割数组的最大值(python,二分法)

1. 题目给定一个非负整数数组和一个整数 m,你需要将这个数组分成 m 个非空的连续子数组。设计一个算法使得这 m 个子数组各自和的最大值最小。注意:数组长度 n 满足以下条件:1 ≤ n ≤ 10001 ≤ m ≤ min(50, n)示例:输入:nums = [7,2,5,10,8]m = 2输出:18解释:一共有四种方法将nums分割为2个子数组。其中最好的方式是将其分为[7,2,5] 和 [10,8],因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
原创
68阅读
0评论
0点赞
发布博客于 5 月前

LeetCode面试题 17.01. 不用加号的加法

1. 题目设计一个函数把两个数字相加。不得使用 + 或者其他算术运算符。示例:输入: a = 1, b = 1输出: 2提示:a, b 均可能是负数或 0结果不会溢出 32 位整数来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/add-without-plus-lcci著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。2. 题解Javaclass Solution { public static
原创
70阅读
0评论
0点赞
发布博客于 5 月前

搜索:PageRank网页排名技术

搜索结果的排名取决于两组信息:关于网页的质量信息,以及这个查询与每个网页的相关性信息。PageRank算法的原理一个网页被很多其他网页所链接,说明它受到普遍的承认和信赖,排名就高。对于不同网页的链接区别对待,排名高的网页链接更可靠,这些链接的权重就更大。但这里,存在网页排名过程需要用到网页本身的排名,因此,可以使用迭代的方法。先假设所有网页的排名是相同的,根据初始值,算出各个网页的第一次迭代排名,然后不断迭代直到收敛。由于网页的数量比较多,描述这个邻接矩阵很巨大,因此,使用稀疏矩阵计算的技巧,简
原创
51阅读
0评论
0点赞
发布博客于 2 月前

Faiss向量召回引擎如何做到快速查找最近邻

Faiss是Facebook开源的向量召回引擎,用于寻找与某个向量最相似的N个向量。1. 简介向量量化(Vector Quantization)所谓向量量化,就是将原来无限的空间 映射到一个有限的向量集合当然这里的映射函数也不是随便指定的,需要满足误差最小的原则,一种方法是将优化函数设置为最小平方误差:正好就是k-means方法的目标函数!因此我们可以用k-means作为寻找最佳codebook的方法。假设我们将原来2000W个向量映射到大小为20W的集合中(平均每个中心点代表100
原创
6249阅读
0评论
0点赞
发布博客于 5 月前

NLP介绍(1)

NLP主要研究方向信息抽取: 从给定文本中抽取重要的信息,比如时间、地点、人物、事件、原因、结果、数字、日期、货币、专有名词等等。通俗说来,就是要了解谁在什么时候、什么原因、对谁、做了什么事、有什么结果。文本生成: 机器像人一样使用自然语言进行表达和写作。依据输入的不同,文本生成技术主要包括数据到文本生成和文本到文本生成。数据到文本生成是指将包含键值对的数据转化为自然语言文本;文本到文本生成对输入文本进行转化和处理从而产生新的文本。问答系统: 对一个自然语言表达的问题,由问答系统给出一个精准的答案。需
转载
5972阅读
0评论
0点赞
发布博客于 4 月前

python状态码

56、列出常见的状态码和意义200 OK请求正常处理完毕204 No Content请求成功处理,没有实体的主体返回206 Partial ContentGET范围请求已成功处理301 Moved Permanently永久重定向,资源已永久分配新URI302 Found临时重定向,资源已临时分配新URI303 See Other临时重定向,期望使用GET定向获取304 Not Modified发送的附带条件请求未满足307 Temporary Redirect临时重定向,P
原创
79阅读
0评论
0点赞
发布博客于 5 月前

Python垃圾回收机制

引用计数Python中,主要通过引用计数(Reference Counting)进行垃圾回收。在Python中每一个对象的核心就是一个结构体PyObject,它的内部有一个引用计数器(ob_refcnt)。程序在运行的过程中会实时的更新ob_refcnt的值,来反映引用当前对象的名称数量。当某对象的引用计数值为0,那么它的内存就会被立即释放掉。typedef struct_object { int ob_refcnt; struct_typeobject *ob_type;} PyObject;
原创
49阅读
0评论
0点赞
发布博客于 4 月前

python list底层实现

列表实现可以是数组和链表。这里数值是指动态数组。因此:利用 list.insert(i,item) 方法在任意位置插入一个元素——复杂度O(N)利用 list.pop(i) 或 list.remove(value) 删除一个元素——复杂度O(N)index() O(1)append O(1)pop() O(1)pop(i) O(n)insert(i,item) O(n)del operator O(n)iteration O(n)contains(in) O(n)get slice[
原创
90阅读
0评论
0点赞
发布博客于 5 月前

python 大数两数相减

问题描述两个长度超出常规整形变量上限的大数相减,避免使用各语言内置库。输入两个代表整数的字符串 a 和 b,长度超过百位。输出 :返回表示结果整数的字符串。#!/usr/bin/env python# encoding=utf-8def big_num_minus(str1, str2): res = "" carry = 0 minus_flag = False if len(str1) < len(str2): minus_flag
原创
316阅读
0评论
0点赞
发布博客于 5 月前

LeetCode3.无重复字符的最长子串

1. 题目给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。示例 1:输入: "abcabcbb"输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: "pwwkew"输出: 3解释: 因为无重复字符的最长子串是 "wke",所以其长度为 3。 请注意,你的答案必须是 子串 的长度,"pwke" 是一个子序列
原创
50阅读
0评论
0点赞
发布博客于 5 月前

LeetCode283. 移动零

1. 题目给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。示例:输入: [0,1,0,3,12]输出: [1,3,12,0,0]说明:必须在原数组上操作,不能拷贝额外的数组。尽量减少操作次数。来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/move-zeroes著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。2. 题解这题关键是复杂度降下来,这里给出 O(
原创
50阅读
0评论
0点赞
发布博客于 5 月前

python二进制和十进制,十六进制的转换

#!/usr/bin/env python# encoding=utf-8def binary2decimal(x): string = str(x)[2:][::-1] res = 0 for i,num in enumerate(string): res += int(num)*2**i return resdef decimal2binary(x): res = "" while x: m = x%2
原创
61阅读
0评论
0点赞
发布博客于 5 月前

python面向对象三大特性:封装,继承,多态

面向编程三大特性:封装(隐藏),继承,多态。一. 封装通过私有属性,私有方法的方式实现封装。二. 继承python支持多重继承,一个之类可以继承多个父类。class 子类类名(父类1,父类2,…): 类体 父类名.__init__(self,参数列表)1.成员继承:子类继承了父类除构造方法之外的所有成员。2.方法重写:子类可以重新定义父类中的方法,这样就会覆盖父类中的方法,也称为重写。通过类的方法**dir()**查看对象属性重写__str__方法:用于返回一个对于“
原创
76阅读
0评论
0点赞
发布博客于 4 月前

字符串字符全组合(python)

1. 相邻字符的组合输入一个字符串,输出该字符串中相邻字符的所有组合。举个例子,如果输入abc,它的组合有a、b、c、ab、bc、abc。(注意:输出的组合需要去重)输入描述:一个字符串输出描述:一行,每个组合以空格分隔,相同长度的组合需要以字典序排序,且去重。示例1输入bac输出a b c ac ba bac链接:https://www.nowcoder.com/questionTerminal/837f4d04f5cb4f26a8215b2b95cc76a5来源:牛客网
原创
434阅读
2评论
2点赞
发布博客于 5 月前

LeetCode120. 三角形最小路径和(python)

1. 问题给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。例如,给定三角形:[ [2], [3,4], [6,5,7], [4,1,8,3]]自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。说明:如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。来源:
原创
76阅读
0评论
0点赞
发布博客于 5 月前

LeetCode剑指 Offer 47. 礼物的最大价值

1. 题目在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?示例 1:输入: [ [1,3,1], [1,5,1], [4,2,1]]输出: 12解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物来源:力扣(LeetCode)链接:https://leetcode-cn.com
原创
41阅读
0评论
0点赞
发布博客于 5 月前

一文详解二叉搜索树,平衡二叉树,红黑树,B树,B+树(含python代码)

二叉查找树(BST):不平衡平衡二叉树(AVL):旋转耗时由于旋转的耗时,AVL树在删除数据时效率很低;在删除操作较多时,维护平衡所需的代价可能高于其带来的好处,因此AVL实际使用并不广泛。红黑树:树太高B树:为磁盘而生每个节点最多包含 m 个子节点。如果根节点包含子节点,则至少包含 2 个子节点;除根节点外,每个非叶节点至少包含 m/2 个子节点。拥有 k 个子节点的非叶节点将包含 k - 1 条记录。所有叶节点都在同一层中。可以看出,B树的定义,主要是对非叶结点的子节点数量和记录数量
原创
64阅读
0评论
0点赞
发布博客于 4 月前

python random 模块

import randomdef test(): lt = [i for i in range(10)] print(random.choice(lt)) print(random.sample(lt, 5)) random.shuffle(lt) print("shuffle lt",lt) print(random.randrange(1,10)) print(random.randint(1,10)) print(random.rand
原创
50阅读
0评论
0点赞
发布博客于 5 月前

python模块名

6.3. dir() 函数内置函数 dir() 用于查找模块定义的名称。 它返回一个排序过的字符串列表:https://docs.python.org/zh-cn/3/tutorial/modules.html
原创
31阅读
0评论
0点赞
发布博客于 4 月前